Skip to main content
Log in

Advances in Biosensing and Environmental Monitoring Based on Electrospun Nanofibers

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Electrospun nanofibers (NFs) are directly produced by electrospinning technology. They are useful in a series of applications such as excellent performance in biosensing and environmental monitoring, due to their large specific surface area and high porosity. The wide range of materials used provide a solid foundation and core guarantee for electrospun NFs to sense, which are used in a variety of polymers, small molecules, colloidal particles, and composites. Biosensing primarily aims at small biomolecules, biomacromolecules, wearable human motion monitoring, and food safety testing. Environmental monitoring encompasses the detection of gases, humidity, volatile organic compounds, and monitoring the degradation of heavy metal ions. We aim to sort out some recent research for electrospun NFs in the sensing area, which may inspire emerging smart sensing devices and bring a novel approach for biomedical development and environmental remediation. We highlight the powerful applications of electrospun NFs in the rapidly growing field of wearable electronic devices, which may spur the industry’s novel perspectives on the development of wearables. Finally, we point out some unresolved difficulties in the sensing field for electrospun NFs and propose possible and novel ideas for this development.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2007, Elsevier Ltd. b SEM and transmission electron microscopy (TEM) images of the hollow NFs. c Color changes on the testing strip. b and c Reproduced with permission [142]. Copyright 2014, Royal Society of Chemistry. d SEM image of PVA/PEI fiber after immersing in Au NP solution (left), impedance spectra of composite electrode sensing glucose (middle), and the effect on glucose sensing when influenced (right). Reproduced with permission [143]. Copyright 2016, Elsevier Ltd. e SEM and TEM images of Mn2O3-Ag fiber and Mn2O3-Ag-GOx/GCE responses to glucose and acids. Reproduced with permission [145]. Copyright 2011, Wiley Periodicals, Inc. f Fabrication of CuCo-carbon NFs and the responses of bimetallic MCo-carbon NFs sensing glucose. Reproduced with permission [146]. Copyright 2014, Elsevier Ltd. g SEM image of NiO fiber/GCE and its response of glucose. Reproduced with permission [147]. Copyright 2012, Elsevier Ltd.

Fig. 3

Copyright 2019, Elsevier Ltd. c SEM and TEM image of the DNA-functionalized Au NPs on cellulose acetate fiber. d Specific sensing performance of DNA-Au NP-cellulose acetate fiber film in different nucleic sequences (left) and the stability performance on detecting Breast Cancer susceptibility gene-1 (BRCA1) (right). cd Reproduced with permission [162]. Copyright 2013, American Chemical Society

Fig. 4

Copyright 2017, Elsevier Ltd. b SEM images of the nitrocellulose (NC) film (upper left), the polycaprolactone (PCL)-decorated NC film (upper right), and the empowered sensing ability of the modified film. Reproduced with permission [163]. Copyright 2018, Elsevier Ltd. c Field emission scanning electron microscopy (FESEM) images of GMnO NFs before (upper left) and after (bottom left) calcination, an illustration showing the condition of the hybridization on the electrode (middle), and differential pulse voltammetry results for matched and mutated DNA points (right). Reproduced with permission [159]. Copyright 2018, Wiley–VCH. d SEM images of polyacrylonitrile (PAN) fibers on graphite electrode (left) and the sensor responses of guanine oxidation (right). Reproduced with permission [160]. Copyright 2017, Wiley Periodicals, Inc

Fig. 5

Copyright 2018, Elsevier Ltd. d Schematic of the fabrication of a typical network-MXene (Ti3C2Tx)/polyurethane (M/P) mat strain sensor (upper) and SEM images of the mat before and after being stretched by 40% (bottom). Fabrication of an MXene/polyurethane strain sensor (upper) and SEM images showing its 40% stretch (bottom). e sensor reacts to the body motion. d and e Reproduced with permission [211]. Copyright 2019, Royal Society of Chemistry. f Temperature, temperature–pressure, and pressure sensing capabilities of the fiber-based sensor. Reproduced with permission [28]. Copyright 2019, Royal Society of Chemistry

Fig. 6

Copyright 2019, American Chemical Society. c Fabrication and light detecting capabilities of the multifunctional sensor. d Pressure sensing performance of the multifunctional sensor. cd Reproduced with permission [218]. Copyright 2017, Elsevier Ltd

Fig. 7

Copyright 2019, Elsevier Ltd. b Fabrication of a carbon nanowire sensor chip. c Current–voltage relationship of the fabricated nanowire sensor (1,2) and its detection of S. Typhimurium (3,4). b and c Reproduced with permission [225]. Copyright 2018, Elsevier Ltd

Fig. 8

Copyright 2018, Elsevier Ltd. c FESEM images of the ZnO fiber under 100 and 150 kGy irradiation. d ZnO fiber reacts to H2. cd Reproduced with permission [34]. Copyright 2019, Elsevier Ltd. e FESEM images of PAN fibers at RH 35%. f Filtration efficiency (left), pressure drop (middle), and stability of particulate matter (PM) 2.5 removal (right) of the fabricated PAN fiber. ef Reproduced with permission [239]. Copyright 2019, Wiley‐VCH

Fig. 9

Copyright 2019, Taiwan Institute of Chemical Engineers. b FESEM images of the fibers of average molecular weight of 100,000 (P1), 200,000 (P2), and 400,000 (P4). c Dielectric (left) and impedance (right) properties of the different fibers. b and c Reproduced with permission [247]. Copyright 2019, Elsevier Ltd. d Energy dispersive spectroscopy (EDS) mapping of TiO2/WO3 fibers. e SEM images of TiO2/WO3 fibers before and after sintering (right) and their impedance properties at varied RH (left). d and e Reproduced with permission (open access) [248]. Copyright 2019, The Author(s)

Fig. 10

Copyright 2019, Elsevier Ltd. b Responses to various organic gases of Pd@Co3O4-ZnO (left), selectivity of sensors (middle), and TEM image of the fiber (right). Reproduced with permission [252]. Copyright 2018, Elsevier Ltd. c Isopropyl alcohol (left) and RT VOC (middle) sensing abilities and SEM images (right) of the fabricated gas sensor. Reproduced with permission [253]. Copyright 2018, Elsevier Ltd. d FESEM image of pure LaFeO3 and La0.75Ba0.25FeO3 fibers (left), reactions of the sensor when detecting ethanol gas (middle), and sensor responses at varied temperatures (right). Reproduced with permission [254]. Copyright 2018, Elsevier Ltd. e SEM image of the composite fibers (left 1), TEM image of the calcined In–Sn–O–25 fibers (left 2), responses to methanol of different sensors (middle), and reactions to methanol of In–Sn–O–25 fiber (right). Reproduced with permission [255]. Copyright 2009, American Ceramic Society

Fig. 11

Copyright 2015, Royal Society of Chemistry. c Diagram showing the mechanism of Fe (II) sensor (top), selectivity of the sensor (middle), and its colorimetric sensing of Fe (II) (bottom). Reproduced with permission [259]. Copyright 2013, Elsevier Ltd. d Diagram of immobilizing Pd NPs on the surface of PEI/PVA fiber (left), SEM image of the fibers after detecting Cr (VI) (upper right), and the diagram showing the rate of trapping Cr (VI) with the modified fiber as a catalyst (bottom right). Reproduced with permission [261]. Copyright 2012, American Chemical Society. e Experimental setup for nanocomposites fabrication (left), silhouette coefficient (middle), and data plot of blue boxes of each sensing unit (right). Reproduced with permission [260]. Copyright 2019, Elsevier Ltd

Similar content being viewed by others

References

  1. Jt B. Sense of force and sense of temperature. Nature 1879;19:554.

    Article  Google Scholar 

  2. Ak R. Sense of force and sense of temperature. Nature 1879;20:6.

    Article  Google Scholar 

  3. Chernetsov N, Pakhomov A, Kobylkov D, Kishkinev D, Holland RA, Mouritsen H. Migratory eurasian reed warblers can use magnetic declination to solve the longitude problem. Curr Biol 2017;27:2647.

    Article  CAS  Google Scholar 

  4. Fitak RR, Wheeler BR, Ernst DA, Lohmann KJ, Johnsen S. Candidate genes mediating magnetoreception in rainbow trout (Oncorhynchus mykiss). Biol Lett 2017;13:20170142.

    Article  CAS  Google Scholar 

  5. Niesterok B, Krüger Y, Wieskotten S, Dehnhardt G, Hanke W. Hydrodynamic detection and localization of artificial flatfish breathing currents by harbour seals (Phoca vitulina). J Exp Biol 2017;220:174.

    Article  Google Scholar 

  6. Catania KC. Electric eels use high-voltage to track fast-moving prey. Nat Commun 2015;6:8638.

    Article  CAS  Google Scholar 

  7. Chen Z, Wang J, Pan D, Wang Y, Noetzel R, Li H, Xie P, Pei W, Umar A, Jiang L, Li N, Rooij NF, Zhou G. Mimicking a dog’s nose: Scrolling graphene nanosheets. ACS Nano 2018;12:2521.

    Article  CAS  Google Scholar 

  8. Zhang C, Ye WB, Zhou K, Chen H-Y, Yang J-Q, Ding G, Chen X, Zhou Y, Zhou L, Li F, Han S-T. Bioinspired artificial sensory nerve based on Nafion memristor. Adv Funct Mater 2019;29:1808783.

    Article  CAS  Google Scholar 

  9. Gong M, Wan P, Ma D, Zhong M, Liao M, Ye J, Shi R, Zhang L. Flexible breathable nanomesh electronic devices for on-demand therapy. Adv Funct Mater 2019;29:1902127.

    Article  CAS  Google Scholar 

  10. Chung HU, Kim BH, Lee JY, Lee J, Xie ZQ, Ibler EM, Lee K, Banks A, Jeong JY, Kim J, Ogle C, Grande D, Yu Y, Jang H, Assem P, Ryu D, Kwak JW, Namkoong M, Park JB, Lee Y, Kim DH, Ryu A, Jeong J, You K, Ji BW, Liu ZJ, Huo QZ, Feng X, Deng YJ, Xu YS, Jang KI, Kim J, Zhang YH, Ghaffari R, Rand CM, Schau M, Hamvas A, Weese-Mayer DE, Huang YG, Lee SM, Lee CH, Shanbhag NR, Paller AS, Xu S, Rogers JA. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 2019;363:eaau0780.

    Article  CAS  Google Scholar 

  11. Rogers J, Malliaras G, Someya T. Biomedical devices go wild. Sci Adv 2018;4:2.

    Article  Google Scholar 

  12. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019;25:44.

    Article  CAS  Google Scholar 

  13. Mohr DC, Zhang M, Schueller SM. Personal sensing: understanding mental health using ubiquitous sensors and machine learning. Annu Rev Clin Psychol 2017;13:23.

    Article  Google Scholar 

  14. Zhang X, Chen G, Bian F, Cai L, Zhao Y. Encoded microneedle arrays for detection of skin interstitial fluid biomarkers. Adv Mater 2019;31:1902825.

    Article  CAS  Google Scholar 

  15. Jung YH, Park B, Kim JU, Kim T-i. Bioinspired electronics for artificial sensory systems. Adv Mater 2019;31:1803637.

    Article  CAS  Google Scholar 

  16. Pons JL. Witnessing a wearables transition. Science 2019;365:636.

    Article  CAS  Google Scholar 

  17. Llamas R, Ubrani J, Shirer M. IDC reports strong growth in the worldwide wearables market, led by holiday shipments of smartwatches, wrist bands, and ear-worn devices. Internet Data Center. https://www.idc.com/getdoc.jsp?containerId=prUS44901819. Accessed 5 Mar 2019.

  18. Wilbanks JT, Topol EJ. Stop the privatization of health data. Nature 2016;535:345.

    Article  CAS  Google Scholar 

  19. Gartenberg C. Google buys fitbit for $2.1 billion. THE VERGE. https://www.theverge.com/2019/11/1/20943318/google-fitbit-acquisition-fitness-tracker-announcement. Accessed 1 Nov 2019.

  20. Ryplida B, Lee KD, In I, Park SY. Light-induced swelling-responsive conductive, adhesive, and stretchable wireless film hydrogel as electronic artificial skin. Adv Funct Mater 2019;29:1903209.

    Article  CAS  Google Scholar 

  21. Yang H, Yeow BS, Li Z, Li K, Chang T-H, Jing L, Li Y, Ho JS, Ren H, Chen P-Y. Multifunctional metallic backbones for origami robotics with strain sensing and wireless communication capabilities. Sci Robot 2019;4:eaax7020.

    Article  Google Scholar 

  22. Araki T, Uemura T, Yoshimoto S, Takemoto A, Noda Y, Izumi S, Sekitani T. Wireless monitoring using a stretchable and transparent sensor sheet containing metal nanowires. Adv Mater 2020;32:1902684.

    Article  CAS  Google Scholar 

  23. Chung HU, Rwei AY, Hourlier-Fargette A, Xu S, Lee K, Dunne EC, Xie Z, Liu C, Carlini A, Kim DH, Ryu D, Kulikova E, Cao J, Odland IC, Fields KB, Hopkins B, Banks A, Ogle C, Grande D, Park JB, Kim J, Irie M, Jang H, Lee J, Park Y, Kim J, Jo HH, Hahm H, Avila R, Xu Y, Namkoong M, Kwak JW, Suen E, Paulus MA, Kim RJ, Parsons BV, Human KA, Kim SS, Patel M, Reuther W, Kim HS, Lee SH, Leedle JD, Yun Y, Rigali S, Son T, Jung I, Arafa H, Soundararajan VR, Ollech A, Shukla A, Bradley A, Schau M, Rand CM, Marsillio LE, Harris ZL, Huang Y, Hamvas A, Paller AS, Weese-Mayer DE, Lee JY, Rogers JA. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat Med 2020;26:418.

    Article  CAS  Google Scholar 

  24. Torrente-Rodríguez RM, Tu J, Yang Y, Min J, Wang M, Song Y, Yu Y, Xu C, Ye C, IsHak WW, Gao W. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2020;2:921.

    Article  Google Scholar 

  25. Gou G-Y, Jin ML, Lee B-J, Tian H, Wu F, Li Y-T, Ju Z-Y, Jian J-M, Geng X-S, Ren J, Wei Y, Jiang G-Y, Qiao Y, Li X, Kim SJ, Gao M, Jung H-T, Ahn CW, Yang Y, Ren T-L. Flexible two-dimensional Ti3C2 MXene films as thermoacoustic devices. ACS Nano 2019;13:12613.

    Article  CAS  Google Scholar 

  26. Lee L. Global true wireless hearables market reaches 33 million units in Q3 2019. Counterpoint Technology Market Research. https://www.counterpointresearch.com/global-true-wireless-hearables-market-reaches-33-million-units-q3-2019/. Accessed 15 Nov 2019.

  27. An BW, Heo S, Ji S, Bien F, Park J-U. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat Commun 2018;9:2458.

    Article  CAS  Google Scholar 

  28. Wang Z, Zhang L, Liu J, Li C. A flexible bimodal sensor based on an electrospun nanofibrous structure for simultaneous pressure-temperature detection. Nanoscale 2019;11:14242.

    Article  CAS  Google Scholar 

  29. Kim J, Lee G, Heimgartner R, Arumukhom Revi D, Karavas N, Nathanson D, Galiana I, Eckert-Erdheim A, Murphy P, Perry D, Menard N, Choe DK, Malcolm P, Walsh CJ. Reducing the metabolic rate of walking and running with a versatile, portable exosuit. Science 2019;365:668.

    Article  CAS  Google Scholar 

  30. Ren H, Zheng L, Wang G, Gao X, Tan Z, Shan J, Cui L, Li K, Jian M, Zhu L, Zhang Y, Peng H, Wei D, Liu Z. Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano 2019;13:5541.

    Article  CAS  Google Scholar 

  31. Ruth SRA, Beker L, Tran H, Feig VR, Matsuhisa N, Bao Z. Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals. Adv Funct Mater 2019;30:1903100.

    Article  CAS  Google Scholar 

  32. Sengupta D, Pei Y, Kottapalli AGP. Ultralightweight and 3D squeezable graphene-polydimethylsiloxane composite foams as piezoresistive sensors. ACS Appl Mater Interfaces 2019;11:35201.

    Article  CAS  Google Scholar 

  33. Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart TJ, Machado F, Kobrin B, Höhn TO, Rui NZ, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin VV, Moore JE, Levitas VI, Jeanloz R, Yao NY. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science 2019;366:1349.

    Article  CAS  Google Scholar 

  34. Kim J-H, Mirzaei A, Woo Kim H, Wu P, Kim SS. Design of supersensitive and selective ZnO-nanofiber-based sensors for H2 gas sensing by electron-beam irradiation. Sens Actuators B 2019;293:210.

    Article  CAS  Google Scholar 

  35. Nugroho FAA, Darmadi I, Cusinato L, Susarrey-Arce A, Schreuders H, Bannenberg LJ, da Silva Fanta AB, Kadkhodazadeh S, Wagner JB, Antosiewicz TJ, Hellman A, Zhdanov VP, Dam B, Langhammer C. Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nat Mater 2019;18:489.

    Article  CAS  Google Scholar 

  36. She X, Shen Y, Wang J, Jin C. Pd films on soft substrates: a visual, high-contrast and low-cost optical hydrogen sensor. Light Sci Appl 2019;8:4.

    Article  CAS  Google Scholar 

  37. Šutka A, Gross KA. Spinel ferrite oxide semiconductor gas sensors. Sens Actuators B 2016;222:95.

    Article  CAS  Google Scholar 

  38. Van Hoang N, Hung CM, Hoa ND, Van Duy N, Park I, Van Hieu N. Excellent detection of H2S gas at ppb concentrations using ZnFe2O4 nanofibers loaded with reduced graphene oxide. Sens Actuators B 2019;282:876.

    Article  CAS  Google Scholar 

  39. Lee J, Llerena Zambrano B, Woo J, Yoon K, Lee T. Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: materials, fabrications, and applications. Adv Mater 2020;32:1902532.

    Article  CAS  Google Scholar 

  40. Yao S, Ren P, Song R, Liu Y, Huang Q, Dong J, O’Connor BT, Zhu Y. Nanomaterial-enabled flexible and stretchable sensing systems: processing, integration, and applications. Adv Mater 2020;32:1902343.

    Article  CAS  Google Scholar 

  41. Wang Y, Yang L, Shi X-L, Shi X, Chen L, Dargusch MS, Zou J, Chen Z-G. Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater 2019;31:1807916.

    Article  CAS  Google Scholar 

  42. Zhao P, Xu B, Zhang Y, Li B, Chen H. Study on the twisted and coiled polymer actuator with strain self-sensing ability. ACS Appl Mater Interfaces 2020;12:15716.

    Article  CAS  Google Scholar 

  43. Yuan Z, Zhou T, Yin Y, Cao R, Li C, Wang ZL. Transparent and flexible triboelectric sensing array for touch security applications. ACS Nano 2017;11:8364.

    Article  CAS  Google Scholar 

  44. Zhao L, Yin Y, Jiang B, Guo Z, Qu C, Huang Y. Fast room-temperature self-healing siloxane elastomer for healable stretchable electronics. J Colloid Interface Sci 2020;573:105.

    Article  CAS  Google Scholar 

  45. Wei X, Zhou H, Chen F, Wang HX, Ji ZL, Lin T. High-efficiency low-resistance oil-mist coalescence filtration using fibrous filters with thickness-direction asymmetric wettability. Adv Funct Mater 2019;29:8.

    Article  Google Scholar 

  46. Bagchi S, Achla R, Mondal SK. Electrospun polypyrrole-polyethylene oxide coated optical fiber sensor probe for detection of volatile compounds. Sens Actuators B 2017;250:52.

    Article  CAS  Google Scholar 

  47. Tripathy S, Bhandari V, Sharma P, Vanjari SRK, Singh SG. Chemiresistive DNA hybridization sensor with electrospun nanofibers: a method to minimize inter-device variability. Biosens Bioelectron 2019;133:24.

    Article  CAS  Google Scholar 

  48. Park JJ, Hyun WJ, Mun SC, Park YT, Park OO. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Interfaces 2015;7:6317.

    Article  CAS  Google Scholar 

  49. Li P, Zhang Y, Zheng Z. Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: Principle, materials, printing, and devices. Adv Mater 2019;31:e1902987.

    Article  CAS  Google Scholar 

  50. Yin X-Y, Zhang Y, Xiao J, Moorlag C, Yang J. Monolithic dual-naterial 3D printing of ionic skins with long-term performance stability. Adv Funct Mater 2019;29:1904716.

    Article  CAS  Google Scholar 

  51. Cao W-T, Ma C, Mao D-S, Zhang J, Ma M-G, Chen F. MXene-reinforced cellulose nanofibril Inks for 3D-printed smart fibres and textiles. Adv Funct Mater 2019;29:1905898.

    Article  CAS  Google Scholar 

  52. Sreenilayam SP, Ahad IU, Nicolosi V, Acinas Garzon V, Brabazon D. Advanced materials of printed wearables for physiological parameter monitoring. Mater Today 2020;32:147.

    Article  Google Scholar 

  53. Dai J, Ogbeide O, Macadam N, Sun Q, Yu W, Li Y, Su B-L, Hasan T, Huang X, Huang W. Printed gas sensors. Chem Soc Rev 2020;49:1756.

    Article  CAS  Google Scholar 

  54. Zhou L-y, Fu J-z, Gao Q, Zhao P, He Y. All-printed flexible and stretchable electronics with pressing or freezing activatable liquid-metal–silicone inks. Adv Funct Mater 2020;30:1906683.

    Article  CAS  Google Scholar 

  55. Ran W, Wang L, Zhao S, Wang D, Yin R, Lou Z, Shen G. An integrated flexible all-nanowire infrared sensing system with record photosensitivity. Adv Mater 2020;32:1908419.

    Article  CAS  Google Scholar 

  56. Yu D, Beckelmann D, Opsoelder M, Schaefer B, Moh K, Hensel R, de Oliveira PW, Arzt E. Roll-to-roll manufacturing of micropatterned adhesives by template compression. Materials 2019;12:97.

    Article  CAS  Google Scholar 

  57. You R, Liu Y-Q, Hao Y-L, Han D-D, Zhang Y-L, You Z. Laser fabrication of graphene-based flexible electronics. Adv Mater 2020;32:1901981.

    Article  CAS  Google Scholar 

  58. Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M. Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 2012;41:4708.

    Article  CAS  Google Scholar 

  59. Zhu M, Kikutani T, Liu T, Ramakrishna S, Tao G. Fiber changes our life. Adv Fiber Mater 2019;1:1.

    Article  CAS  Google Scholar 

  60. Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma ZW, Ramaseshan R. Electrospun nanofibers: solving global issues. Mater Today 2006;9:40.

    Article  CAS  Google Scholar 

  61. Thavasi V, Singh G, Ramakrishna S. Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 2008;1:205.

    Article  CAS  Google Scholar 

  62. Dzenis Y. Spinning continuous fibers for nanotechnology. Science 2004;304:1917.

    Article  CAS  Google Scholar 

  63. Han J, Xiong L, Jiang X, Yuan X, Zhao Y, Yang D. Bio-functional electrospun nanomaterials: from topology design to biological applications. Prog Polym Sci 2019;91:1.

    Article  CAS  Google Scholar 

  64. Ding YC, Hou HQ, Zhao Y, Zhu ZT, Fong H. Electrospun polyimide nanofibers and their applications. Prog Polym Sci 2016;61:67.

    Article  CAS  Google Scholar 

  65. Reneker DH, Yarin AL, Zussman E, Xu H. Electrospinning of nanofibers from polymer solutions and melts. In: Aref H, Van Der Giessen E, editors. Advances in Applied Mechanics. San Diego: Elsevier Academic Press Inc; 2007. p. 43.

    Google Scholar 

  66. Heim M, Keerl D, Scheibel T. Spider silk: From soluble protein to extraordinary fiber. Angew Chem Int Ed 2009;48:3584.

    Article  CAS  Google Scholar 

  67. Vollrath F, Knight DP. Liquid crystalline spinning of spider silk. Nature 2001;410:541.

    Article  CAS  Google Scholar 

  68. Ma Y, Li D, Xiao Y, Ouyang Z, Shen M, Shi X. LDH-doped electrospun short fibers enable dual drug loading and multistage release for chemotherapy of drug-resistant cancer cells. New J Chem 2021;45:13421.

    Article  CAS  Google Scholar 

  69. Zhao K, Lu Z-H, Zhao P, Kang S-X, Yang Y-Y, Yu D-G. Modified tri–axial electrospun functional core–shell nanofibrous membranes for natural photodegradation of antibiotics. Chem Eng J 2021;425:131455.

    Article  CAS  Google Scholar 

  70. Liang M, Wang F, Liu M, Yu J, Si Y, Ding B. N-halamine functionalized electrospun poly(vinyl alcohol-co-ethylene) nanofibrous membranes with rechargeable antibacterial activity for bioprotective applications. Adv Fiber Mater 2019;1:126.

    Article  Google Scholar 

  71. Liu Y, Wu F, Ding Y, Zhu B, Su Y, Zhu X. Preparation and characterization of paclitaxel/chitosan nanosuspensions for drug delivery system and cytotoxicity evaluation in vitro. Adv Fiber Mater 2019;1:152.

    Article  CAS  Google Scholar 

  72. Wu F, He P, Chang X, Jiao W, Liu L, Si Y, Yu J, Ding B. Visible-light-driven and self-hydrogen-donated nanofibers enable rapid-deployable antimicrobial bioprotection. Small 2021;17:2100139.

    Article  CAS  Google Scholar 

  73. Ning T, Zhou Y, Xu H, Guo S, Wang K, Yu D-G. Orodispersible membranes from a modified coaxial electrospinning for fast dissolution of diclofenac sodium. Membranes 2021;11:802.

    Article  CAS  Google Scholar 

  74. Du X-Y, Li Q, Wu G, Chen S. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv Mater 2019;31:1903733.

    Article  CAS  Google Scholar 

  75. Ma W, Zhao J, Oderinde O, Han J, Liu Z, Gao B, Xiong R, Zhang Q, Jiang S, Huang C. Durable superhydrophobic and superoleophilic electrospun nanofibrous membrane for oil-water emulsion separation. J Colloid Interface Sci 2018;532:12.

    Article  CAS  Google Scholar 

  76. Yang H, Jiang S, Fang H, Hu X, Duan G, Hou H. Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy. Spectrochim Acta A 2018;200:339.

    Article  CAS  Google Scholar 

  77. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev 2019;119:5298.

    Article  CAS  Google Scholar 

  78. Fan W, Zhang X, Li C. Functional fibrous compositions: applications and perspectives. Compos Commun 2019;15:68.

    Article  Google Scholar 

  79. Yang X, Li L, Yang D, Nie J, Ma G. Electrospun core–shell fibrous 2D scaffold with biocompatible poly(glycerol sebacate) and poly-l-lactic acid for wound healing. Adv Fiber Mater 2020;2:105.

    Article  CAS  Google Scholar 

  80. Zhang X, Guo S, Qin Y, Li C. Functional electrospun nanocomposites for efficient oxygen reduction reaction. Chem Res Chin Univ 2021;37:379.

    Article  CAS  Google Scholar 

  81. Cao L, Yu X, Yin X, Si Y, Yu J, Ding B. Hierarchically maze-like structured nanofiber aerogels for effective low-frequency sound absorption. J Colloid Interface Sci 2021;597:21.

    Article  CAS  Google Scholar 

  82. Zhu Z, Hao J, Zhu H, Sun S, Duan F, Lu S, Du M. In situ fabrication of electrospun carbon nanofibers–binary metal sulfides as freestanding electrode for electrocatalytic water splitting. Adv Fiber Mater 2021;3:117.

    Article  CAS  Google Scholar 

  83. Chen Y, Shafiq M, Liu M, Morsi Y, Mo X. Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Bioact Mater 2020;5:963.

    Article  Google Scholar 

  84. Wang M, Hai T, Feng Z, Yu D-G, Yang Y, Annie BS. The relationships between the working fluids, process characteristics and products from the modified coaxial electrospinning of zein. Polymers 2019;11:1287.

    Article  CAS  Google Scholar 

  85. Yang Y, Zhu T, Liu Z, Luo M, Yu D-G, Annie Bligh SW. The key role of straight fluid jet in predicting the drug dissolution from electrospun nanofibers. Int J Pharm 2019;569:118634.

    Article  CAS  Google Scholar 

  86. Yu D-G, Wang M, Li X, Liu X, Zhu L-M, Annie Bligh SW. Multifluid electrospinning for the generation of complex nanostructures. WIREs Nanomed Nanobiotechnol 2020;12:e1601.

    Article  Google Scholar 

  87. Wang Q, Yu D-G, Zhang L-L, Liu X-K, Deng Y-C, Zhao M. Electrospun hypromellose-based hydrophilic composites for rapid dissolution of poorly water-soluble drug. Carbohydr Polym 2017;174:617.

    Article  CAS  Google Scholar 

  88. Yang G, Li X, He Y, Ma J, Ni G, Zhou S. From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications. Prog Polym Sci 2018;81:80.

    Article  CAS  Google Scholar 

  89. Li X, Xu F, He Y, Li Y, Hou J, Yang G, Zhou S. A hierarchical structured ultrafine fiber device for preventing postoperative recurrence and metastasis of breast cancer. Adv Funct Mater 2020;30:2004851.

    Article  CAS  Google Scholar 

  90. Kang S, Hou S, Chen X, Yu D-G, Wang L, Li X, Williams GR. Energy-saving electrospinning with a concentric Teflon-core rod spinneret to create medicated nanofibers. Polymers 2020;12:2421.

    Article  CAS  Google Scholar 

  91. Bai Y, Wang D, Zhang Z, Pan J, Cui Z, Yu D-G, Annie Bligh S-W. Testing of fast dissolution of ibuprofen from its electrospun hydrophilic polymer nanocomposites. Polym Test 2021;93:106872.

    Article  CAS  Google Scholar 

  92. Liu X, Xu H, Zhang M, Yu D-G. Electrospun medicated nanofibers for wound healing: review. Membranes 2021;11:770.

    Article  CAS  Google Scholar 

  93. Dong Y, Zheng Y, Zhang K, Yao Y, Wang L, Li X, Yu J, Ding B. Electrospun nanofibrous materials for wound healing. Adv Fiber Mater 2020;2:212.

    Article  CAS  Google Scholar 

  94. Zheng X, Kang S, Wang K, Yang Y, Yu D-G, Wan F, Williams GR, Bligh S-WA. Combination of structure-performance and shape-performance relationships for better biphasic release in electrospun Janus fibers. Int J Pharm 2021;596:120203.

    Article  CAS  Google Scholar 

  95. Wang M, Yu D-G, Li X, Williams GR. The development and bio-applications of multifluid electrospinning. Mater Highlights 2020;1:1.

    Article  Google Scholar 

  96. Liu Y, Chen X, Yu D-G, Liu H, Liu Y, Liu P. Electrospun PVP-core/PHBV-shell fibers to eliminate tailing off for an improved sustained release of curcumin. Mol Pharm 2021;18:4170.

    Article  CAS  Google Scholar 

  97. He H, Wu M, Zhu J, Yang Y, Ge R, Yu D-G. Engineered spindles of little molecules around electrospun nanofibers for biphasic drug release. Adv Fiber Mater. 2021. https://doi.org/10.1007/s42765-021-00112-9.

    Article  Google Scholar 

  98. Ding Y, Dou C, Chang S, Xie Z, Yu D-G, Liu Y, Shao J. Core-shell Eudragit S100 nanofibers prepared via triaxial electrospinning to provide a colon-targeted extended drug release. Polymers 2020;12:2034.

    Article  CAS  Google Scholar 

  99. Chang S, Wang M, Zhang F, Liu Y, Liu X, Yu D-G, Shen H. Sheath-separate-core nanocomposites fabricated using a trifluid electrospinning. Mater Des 2020;192:108782.

    Article  CAS  Google Scholar 

  100. Wang M, Hou J, Yu D-G, Li S, Zhu J, Chen Z. Electrospun tri-layer nanodepots for sustained release of acyclovir. J Alloys Compd 2020;846:156471.

    Article  CAS  Google Scholar 

  101. Liu Y, Liu X, Liu P, Chen X, Yu D-G. Electrospun multiple-chamber nanostructure and Its potential self-healing applications. Polymers 2020;12:2413.

    Article  CAS  Google Scholar 

  102. Liao Y, Loh CH, Tian M, Wang R, Fane AG. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog Polym Sci 2018;77:69.

    Article  CAS  Google Scholar 

  103. Yu D-G. Preface - Bettering drug delivery knowledge from pharmaceutical techniques and excipients. Curr Drug Delivery 2021;18:2.

    CAS  Google Scholar 

  104. Aidana Y, Wang Y, Li J, Chang S, Wang K, Yu D-G. Fast dissolution electrospun medicated nanofibers for effective delivery of poorly water soluble drugs. Curr Drug Delivery. 2022. https://doi.org/10.2174/1567201818666210215110359.

    Article  Google Scholar 

  105. Ramakrishnan R, Gimbun J, Ramakrishnan P, Ranganathan B, Reddy SMM, Shanmugam G. Effect of solution properties and operating parameters on needleless electrospinning of poly(ethylene oxide) nanofibers loaded with bovine serum albumin. Curr Drug Delivery 2019;16:913.

    Article  CAS  Google Scholar 

  106. Yu DG, Wang M, Ge R. Strategies for sustained drug release from electrospun multi-layer nanostructures. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;13:e1772. https://doi.org/10.1002/wnan.1772.

  107. Liu Y, Chen X, Liu Y, Gao Y, Liu P. Electrospun coaxial fibers to optimize the release of poorly water-soluble drug. Polymers 2022;14:469.

  108. Padmakumar S, Menon D. Nanofibrous polydioxanone depots for prolonged intraperitoneal paclitaxel delivery. Curr Drug Delivery 2019;16:654.

    Article  CAS  Google Scholar 

  109. Vlachou M, Kikionis S, Siamidi A, Tragou K, Kapoti S, Ioannou E, Roussis V, Tsotinis A. Fabrication and characterization of electrospun nanofibers for the modified release of the chronobiotic hormone melatonin. Curr Drug Delivery 2019;16:79.

    Article  CAS  Google Scholar 

  110. Zhang M, Song W, Tang Y, Xu X, Huang Y, Yu D. Polymer-based nanofifiber-nanoparticle hybrids and their medical applications. Polymers 2022;14:351.

  111. Li D, Wang M, Song W-L, Yu D-G, Bligh SW. Electrospun Janus beads-on-a-string structures for different types of controlled release profiles of double drugs. Biomolecules 2021;11:635.

    Article  CAS  Google Scholar 

  112. Wang M, Li D, Li J, Li S, Chen Z, Yu D-G, Liu Z, Guo JZ. Electrospun Janus zein–PVP nanofibers provide a two-stage controlled release of poorly water-soluble drugs. Mater Des 2020;196:109075.

    Article  CAS  Google Scholar 

  113. Lv H, Guo S, Zhang G, He W, Wu Y, Yu D-G. Electrospun structural hybrids of acyclovir-polyacrylonitrile at acyclovir for modifying drug release. Polymers 2021;13:4286.

    Article  CAS  Google Scholar 

  114. Zhou K, Wang M, Zhou Y, Sun M, Xie Y, Yu D-G. Comparisons of antibacterial performances between electrospun polymer@drug nanohybrids with drug-polymer nanocomposites. Adv Compos Hybrid Mater. 2022. https://doi.org/10.1007/s42114-021-00389-9.

    Article  Google Scholar 

  115. Song Y, Huang H, He D, Yang M, Wang H, Zhang H, Li J, Li Y, Wang C. Gallic Acid/2-hydroxypropyl-β-cyclodextrin inclusion complexes electrospun nanofibrous webs: fast dissolution, improved aqueous solubility and antioxidant property of gallic acid. Chem Res Chin Univ 2021;37:450.

    Article  CAS  Google Scholar 

  116. Yu D-G, Lv H. Preface-striding into nano drug delivery. Curr Drug Delivery. 2022;19:2–4.

    Google Scholar 

  117. Xu T, Ding Y, Liang Z, Sun H, Zheng F, Zhu Z, Zhao Y, Fong H. Three-dimensional monolithic porous structures assembled from fragmented electrospun nanofiber mats/membranes: methods, properties, and applications. Prog Mater Sci 2020;112:100656.

    Article  CAS  Google Scholar 

  118. Ding B, Wang MR, Wang XF, Yu JY, Sun G. Electrospun nanomaterials for ultrasensitive sensors. Mater Today 2010;13:16.

    Article  CAS  Google Scholar 

  119. Mercante LA, Scagion VP, Migliorini FL, Mattoso LHC, Correa DS. Electrospinning-based (bio)sensors for food and agricultural applications: a review. TrAC-Trends Anal Chem 2017;91:91.

    Article  CAS  Google Scholar 

  120. Wang K, Wen H-F, Yu D-G, Yang Y, Zhang D-F. Electrosprayed hydrophilic nanocomposites coated with shellac for colon-specific delayed drug delivery. Mater Des 2018;143:248.

    Article  CAS  Google Scholar 

  121. Kang S, He Y, Yu D-G, Li W, Wang K. Drug-zein@lipid hybrid nanoparticles: Electrospraying preparation and drug extended release application. Colloids Surf B 2021;201:111629.

    Article  CAS  Google Scholar 

  122. Wang P, Wang M, Wan X, Zhou H, Zhang H, Yu D-G. Dual-stage release of ketoprofen from electrosprayed core-shell hybrid polyvinyl pyrrolidone/ethyl cellulose nanoparticles. Mater Highlights 2020;1:14.

    Article  Google Scholar 

  123. Huang W, Xiao Y, Shi X. Construction of electrospun organic/inorganic hybrid nanofibers for drug delivery and tissue engineering applications. Adv Fiber Mater 2019;1:32.

    Article  Google Scholar 

  124. Xu H, Xu X, Li S, Song W-L, Yu D-G, Annie Bligh SW. The effect of drug heterogeneous distributions within core-sheath nanostructures on its sustained release profiles. Biomolecules 2021;11:1330.

    Article  CAS  Google Scholar 

  125. Hou J, Yang Y, Yu D-G, Chen Z, Wang K, Liu Y, Williams GR. Multifunctional fabrics finished using electrosprayed hybrid Janus particles containing nanocatalysts. Chem Eng J 2021;411:128474.

    Article  CAS  Google Scholar 

  126. Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 1953;171:737.

    Article  CAS  Google Scholar 

  127. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna Jennifer A, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816.

    Article  CAS  Google Scholar 

  128. Ge X, Xia Z, Guo S. Recent advances on black phosphorus for biomedicine and biosensing. Adv Funct Mater 2019;29:1900318.

    Article  CAS  Google Scholar 

  129. Heikenfeld J, Jajack A, Feldman B, Granger SW, Gaitonde S, Begtrup G, Katchman BA. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat Biotechnol 2019;37:407.

    Article  CAS  Google Scholar 

  130. Wang L, Xie S, Wang Z, Liu F, Yang Y, Tang C, Wu X, Liu P, Li Y, Saiyin H, Zheng S, Sun X, Xu F, Yu H, Peng H. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng 2020;4:159.

    Article  CAS  Google Scholar 

  131. Ohayon D, Nikiforidis G, Savva A, Giugni A, Wustoni S, Palanisamy T, Chen X, Maria IP, Di Fabrizio E, Costa PMFJ, McCulloch I, Inal S. Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nat Mater 2020;19:456.

    Article  CAS  Google Scholar 

  132. Sun X, Chapin BM, Metola P, Collins B, Wang B, James TD, Anslyn EV. The mechanisms of boronate ester formation and fluorescent turn-on in ortho-aminomethylphenylboronic acids. Nat Chem 2019;11:768.

    Article  CAS  Google Scholar 

  133. Sun X, James TD, Anslyn EV. Arresting “loose bolt” internal conversion from −B(OH)2 groups is the mechanism for emission turn-on in ortho-aminomethylphenylboronic acid-based saccharide sensors. J Am Chem Soc 2018;140:2348.

    Article  CAS  Google Scholar 

  134. Senthamizhan A, Balusamy B, Uyar T. Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem 2016;408:1285.

    Article  CAS  Google Scholar 

  135. Kong L, Rohaizad N, Nasir MZM, Guan J, Pumera M. Micromotor-assisted human serum glucose biosensing. Anal Chem 2019;91:5660.

    Article  CAS  Google Scholar 

  136. Odaci D, Gacal BN, Gacal B, Timur S, Yagci Y. Fluorescence sensing of glucose using glucose oxidase modified by PVA-pyrene prepared via “click” chemistry. Biomacromol 2009;10:2928.

    Article  CAS  Google Scholar 

  137. Maric T, Mikhaylov G, Khodakivskyi P, Bazhin A, Sinisi R, Bonhoure N, Yevtodiyenko A, Jones A, Muhunthan V, Abdelhady G, Shackelford D, Goun E. Bioluminescent-based imaging and quantification of glucose uptake in vivo. Nat Methods 2019;16:526.

    Article  CAS  Google Scholar 

  138. McNichols RJ, Cote GL. Optical glucose sensing in biological fluids: an overview. J Biomed Opt 2000;5:5.

    Article  CAS  Google Scholar 

  139. Lin Y, Yu P, Hao J, Wang Y, Ohsaka T, Mao L. Continuous and simultaneous electrochemical measurements of glucose, lactate, and ascorbate in rat brain following brain ischemia. Anal Chem 2014;86:3895.

    Article  CAS  Google Scholar 

  140. Updike SJ, Hicks GP. The enzyme electrode. Nature 1967;214:986.

    Article  CAS  Google Scholar 

  141. Manesh KM, Kim HT, Santhosh P, Gopalan AI, Lee K-P. A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane. Biosens Bioelectron 2008;23:771.

    Article  CAS  Google Scholar 

  142. Ji X, Su Z, Wang P, Ma G, Zhang S. “Ready-to-use” hollow nanofiber membrane-based glucose testing strips. Analyst 2014;139:6467.

    Article  CAS  Google Scholar 

  143. Sapountzi E, Braiek M, Vocanson F, Chateaux JF, Jaffrezic-Renault N, Lagarde F. Gold nanoparticles assembly on electrospun poly(vinyl alcohol)/poly(ethyleneimine)/glucose oxidase nanofibers for ultrasensitive electrochemical glucose biosensing. Sens Actuators B 2017;238:392.

    Article  CAS  Google Scholar 

  144. Huang J, Zhao M, Ye Z. Electrospun porous ZnO nanofibers for glucose biosensors. Adv Mater Res 2014;950:3.

    Article  CAS  Google Scholar 

  145. Huang S, Ding Y, Liu Y, Su L, Filosa R Jr, Lei Y. Glucose biosensor using glucose oxidase and electrospun Mn2O3-Ag nanofibers. Electroanalysis 2011;23:1912.

    Article  CAS  Google Scholar 

  146. Li M, Liu L, Xiong Y, Liu X, Nsabimana A, Bo X, Guo L. Bimetallic MCo (M=Cu, Fe, Ni, and Mn) nanoparticles doped-carbon nanofibers synthetized by electrospinning for nonenzymatic glucose detection. Sens Actuators B 2015;207:614.

    Article  CAS  Google Scholar 

  147. Zhang Y, Wang Y, Jia J, Wang J. Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. Sens Actuators B 2012;171–172:580.

    Article  CAS  Google Scholar 

  148. Kaushik A, Solanki PR, Ansari AA, Sumana G, Ahmad S, Malhotra BD. Iron oxide-chitosan nanobiocomposite for urea sensor. Sens Actuators B 2009;138:572.

    Article  CAS  Google Scholar 

  149. Kumar P, Lambadi PR, Navani NK. Non-enzymatic detection of urea using unmodified gold nanoparticles based aptasensor. Biosens Bioelectron 2015;72:340.

    Article  CAS  Google Scholar 

  150. Migliorini FL, Sanfelice RC, Mercante LA, Andre RS, Mattoso LHC, Correa DS. Urea impedimetric biosensing using electrospun nanofibers modified with zinc oxide nanoparticles. Appl Surf Sci 2018;443:18.

    Article  CAS  Google Scholar 

  151. Drummond TG, Hill MG, Barton JK. Electrochemical DNA sensors. Nat Biotechnol 2003;21:1192.

    Article  CAS  Google Scholar 

  152. Hahm J, Lieber CM. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 2004;4:51.

    Article  CAS  Google Scholar 

  153. Akhavan O, Ghaderi E, Rahighi R. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 2012;6:2904.

    Article  CAS  Google Scholar 

  154. Kwon PS, Ren S, Kwon S-J, Kizer ME, Kuo L, Xie M, Zhu D, Zhou F, Zhang F, Kim D, Fraser K, Kramer LD, Seeman NC, Dordick JS, Linhardt RJ, Chao J, Wang X. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat Chem 2020;12:26.

    Article  CAS  Google Scholar 

  155. Huang HY, Bai WQ, Dong CX, Guo R, Liu ZH. An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. Biosens Bioelectron 2015;68:442.

    Article  CAS  Google Scholar 

  156. Zhang JX, Fang JZ, Duan W, Wu LR, Zhang AW, Dalchau N, Yordanov B, Petersen R, Phillips A, Zhang DY. Predicting DNA hybridization kinetics from sequence. Nat Chem 2018;10:91.

    Article  CAS  Google Scholar 

  157. Glasgow AA, Huang Y-M, Mandell DJ, Thompson M, Ritterson R, Loshbaugh AL, Pellegrino J, Krivacic C, Pache RA, Barlow KA, Ollikainen N, Jeon D, Kelly MJS, Fraser JS, Kortemme T. Computational design of a modular protein sense-response system. Science 2019;366:1024.

    Article  CAS  Google Scholar 

  158. Kerr-Phillips TE, Aydemir N, Chan EWC, Barker D, Malmstrom J, Plesse C, Travas-Sejdic J. Conducting electrospun fibres with polyanionic grafts as highly selective, label-free, electrochemical biosensor with a low detection limit for non-Hodgkin lymphoma gene. Biosens Bioelectron 2018;100:549.

    Article  CAS  Google Scholar 

  159. Tripathy S, Gangwar R, Supraja P, Rao A, Vanjari SRK, Singh SG. Graphene doped Mn2O3 nanofibers as a facile electroanalytical DNA point mutation detection platform for early diagnosis of breast/ovarian cancer. Electroanalysis 2018;30:2110.

    Article  CAS  Google Scholar 

  160. Cam E, Tanik NA, Cerkez I, Demirkan E, Aykut Y. Guanine oxidation signal enhancement in single strand DNA with polyacrylonitrile/polyaniline (PAN/PAni) hybrid nanofibers. J Appl Polym Sci 2018;135:45567.

    Article  CAS  Google Scholar 

  161. Lehman E, Abraham RT. A sugary input to leucine sensing. Science 2020;367:146.

    Article  CAS  Google Scholar 

  162. Wang H, Wang D, Peng Z, Tang W, Li N, Liu F. Assembly of DNA-functionalized gold nanoparticles on electrospun nanofibers as a fluorescent sensor for nucleic acids. Chem Commun (Cambridge, U K) 2013;49:5568.

    Article  CAS  Google Scholar 

  163. Yew C-HT, Azari P, Choi JR, Li F, Pingguan-Murphy B. Electrospin-coating of nitrocellulose membrane enhances sensitivity in nucleic acid-based lateral flow assay. Anal Chim Acta 2018;1009:81.

    Article  CAS  Google Scholar 

  164. Justus KB, Hellebrekers T, Lewis DD, Wood A, Ingham C, Majidi C, LeDuc PR, Tan C. A biosensing soft robot: Autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci Robot 2019;4:eaax0765.

    Article  Google Scholar 

  165. Kim Y, Parada GA, Liu S, Zhao X. Ferromagnetic soft continuum robots. Sci Robot 2019;4:eaax7329.

    Article  Google Scholar 

  166. Dong K, Peng X, Wang ZL. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater 2020;32:1902549.

    Article  CAS  Google Scholar 

  167. Xiao Y-Y, Jiang Z-C, Tong X, Zhao Y. Biomimetic locomotion of electrically powered “Janus” soft robots using a liquid crystal polymer. Adv Mater 2019;31:1903452.

    Article  CAS  Google Scholar 

  168. Jung YH, Hong SK, Wang HS, Han JH, Pham TX, Park H, Kim J, Kang S, Yoo CD, Lee KJ. Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv Mater 2019;32:1904020.

    Article  CAS  Google Scholar 

  169. Lee G-H, Park J-K, Byun J, Yang JC, Kwon SY, Kim C, Jang C, Sim JY, Yook J-G, Park S. Parallel signal processing of a wireless pressure-sensing platform combined with machine-learning-based cognition, inspired by the human somatosensory system. Adv Mater 2020;32:1906269.

    Article  CAS  Google Scholar 

  170. Mennel L, Symonowicz J, Wachter S, Polyushkin DK, Molina-Mendoza AJ, Mueller T. Ultrafast machine vision with 2D material neural network image sensors. Nature 2020;579:62.

    Article  CAS  Google Scholar 

  171. Sim K, Rao Z, Zou Z, Ershad F, Lei J, Thukral A, Chen J, Huang Q-A, Xiao J, Yu C. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Sci Adv 2019;5:eaav9653.

    Article  CAS  Google Scholar 

  172. Zhong J, Ma Y, Song Y, Zhong Q, Chu Y, Karakurt I, Bogy DB, Lin L. A flexible piezoelectret actuator/sensor patch for mechanical human-machine interfaces. ACS Nano 2019;13:7107.

    Article  CAS  Google Scholar 

  173. Alfadhel A, Kosel J. Magnetic nanocomposite cilia tactile sensor. Adv Mater 2015;27:7888.

    Article  CAS  Google Scholar 

  174. Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater 2016;15:937.

    Article  CAS  Google Scholar 

  175. Lee Y, Park J, Choe A, Cho S, Kim J, Ko H. Mimicking human and biological skins for multifunctional skin electronics. Adv Funct Mater 2019;30:1904523.

    Article  CAS  Google Scholar 

  176. Gong S, Yap LW, Zhu B, Zhai Q, Liu Y, Lyu Q, Wang K, Yang M, Ling Y, Lai DTH, Marzbanrad F, Cheng W. Local crack-programmed gold nanowire electronic skin tattoos for in-plane multisensor integration. Adv Mater 2019;31:1903789.

    Article  CAS  Google Scholar 

  177. Amoli V, Kim JS, Jee E, Chung YS, Kim SY, Koo J, Choi H, Kim Y, Kim DH. A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin. Nat Commun 2019;10:4019.

    Article  CAS  Google Scholar 

  178. Xu S, Jayaraman A, Rogers JA. Skin sensors are the future of health care. Nature 2019;571:319.

    Article  CAS  Google Scholar 

  179. Shrivastava S, Trung TQ, Lee N-E. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem Soc Rev 2020;49:1812.

    Article  CAS  Google Scholar 

  180. Wu WW, Haick H. Materials and wearable devices for autonomous monitoring of physiological markers. Adv Mater 2018;30:17.

    Google Scholar 

  181. Jayathilaka W, Qi K, Qin Y, Chinnappan A, Serrano-Garcia W, Baskar C, Wang H, He J, Cui S, Thomas SW, Ramakrishna S. Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv Mater 2019;31:e1805921.

    Article  CAS  Google Scholar 

  182. Ma Y, Zhang Y, Cai S, Han Z, Liu X, Wang F, Cao Y, Wang Z, Li H, Chen Y, Feng X. Flexible hybrid electronics for digital healthcare. Adv Mater 2020;32:1902062.

    Article  CAS  Google Scholar 

  183. Shim H, Sim K, Ershad F, Yang P, Thukral A, Rao Z, Kim H-J, Liu Y, Wang X, Gu G, Gao L, Wang X, Chai Y, Yu C. Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci Adv 2019;5:eaax4961.

    Article  CAS  Google Scholar 

  184. Shin J, Jeong B, Kim J, Nam VB, Yoon Y, Jung J, Hong S, Lee H, Eom H, Yeo J, Choi J, Lee D, Ko SH. Sensitive wearable temperature sensor with seamless monolithic integration. Adv Mater 2020;32:1905527.

    Article  CAS  Google Scholar 

  185. Yu Y, Nassar J, Xu C, Min J, Yang Y, Dai A, Doshi R, Huang A, Song Y, Gehlhar R, Ames AD, Gao W. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci Robot 2020;5:eaaz7946.

    Article  Google Scholar 

  186. Park S-m, Won DD, Lee BJ, Escobedo D, Esteva A, Aalipour A, Ge TJ, Kim JH, Suh S, Choi EH, Lozano AX, Yao C, Bodapati S, Achterberg FB, Kim J, Park H, Choi Y, Kim WJ, Yu JH, Bhatt AM, Lee JK, Spitler R, Wang SX, Gambhir SS. A mountable toilet system for personalized health monitoring via the analysis of excreta. Nat Biomed Eng 2020;4:624.

    Article  Google Scholar 

  187. Yang Q, Lee S, Xue Y, Yan Y, Liu T-L, Kang S-K, Lee YJ, Lee SH, Seo M-H, Lu D, Koo J, MacEwan MR, Yin RT, Ray WZ, Huang Y, Rogers JA. Materials, mechanics designs, and bioresorbable multisensor platforms for pressure monitoring in the intracranial space. Adv Funct Mater 2020;30:1910718.

    Article  CAS  Google Scholar 

  188. Cao R, Pu X, Du X, Yang W, Wang J, Guo H, Zhao S, Yuan Z, Zhang C, Li C, Wang ZL. Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction. ACS Nano 2018;12:5190.

    Article  CAS  Google Scholar 

  189. Zhang C, Li Y, Hu Y, Peng Y, Ahmad Z, Li J-S, Chang M-W. Porous yolk–shell particle engineering via nonsolvent-assisted trineedle coaxial electrospraying for burn-related wound healing. ACS Appl Mater Interfaces 2019;11:7823.

    Article  CAS  Google Scholar 

  190. Zhang X, Lu W, Zhou G, Li Q. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv Mater 2020;32:1902028.

    Article  CAS  Google Scholar 

  191. Yang T, Mativetsky JM. Paper-based mechanical sensors enabled by folding and stacking. ACS Appl Mater Interfaces 2019;11:26339.

    Article  CAS  Google Scholar 

  192. Yu Y, Guo J, Sun L, Zhang X, Zhao Y. Microfluidic generation of microsprings with ionic liquid encapsulation for flexible electronics. Research 2019;2019:9.

    Article  Google Scholar 

  193. Byun S-H, Sim JY, Zhou Z, Lee J, Qazi R, Walicki MC, Parker KE, Haney MP, Choi SH, Shon A, Gereau GB, Bilbily J, Li S, Liu Y, Yeo W-H, McCall JG, Xiao J, Jeong J-W. Mechanically transformative electronics, sensors, and implantable devices. Sci Adv 2019;5:eaay0418.

    Article  CAS  Google Scholar 

  194. Duan L, D’Hooge DR, Cardon L. Recent progress on flexible and stretchable piezoresistive strain sensors: from design to application. Prog Mater Sci 2020;114:100617.

    Article  Google Scholar 

  195. Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H. Application challenges in fiber and textile electronics. Adv Mater 2020;32:1901971.

    Article  CAS  Google Scholar 

  196. Wang H, Li S, Wang Y, Wang H, Shen X, Zhang M, Lu H, He M, Zhang Y. Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv Mater 2020;32:1908214.

    Article  CAS  Google Scholar 

  197. Lao L, Shou D, Wu YS, Fan JT. “Skin-like” fabric for personal moisture management. Sci Adv 2020;6:eaaz0013.

    Article  CAS  Google Scholar 

  198. Peng Y, Cui Y. Advanced textiles for personal thermal management and energy. Joule 2020;4:724.

    Article  CAS  Google Scholar 

  199. Huang L, Lin S, Xu Z, Zhou H, Duan J, Hu B, Zhou J. Fiber-based energy conversion devices for human-body energy harvesting. Adv Mater 2020;32:1902034.

    Article  CAS  Google Scholar 

  200. Zhang S, Lin H, Yang H, Ni B, Li H, Wang X. Highly flexible and stretchable nanowire superlattice fibers achieved by spring-like structure of sub-1 nm nanowires. Adv Funct Mater 2019;29:1903477.

    Article  CAS  Google Scholar 

  201. Nyein HYY, Bariya M, Kivimäki L, Uusitalo S, Liaw TS, Jansson E, Ahn CH, Hangasky JA, Zhao J, Lin Y, Happonen T, Chao M, Liedert C, Zhao Y, Tai L-C, Hiltunen J, Javey A. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci Adv 2019;5:eaaw9906.

    Article  CAS  Google Scholar 

  202. Xu G, Cheng C, Liu Z, Yuan W, Wu X, Lu Y, Low SS, Liu J, Zhu L, Ji D, Li S, Chen Z, Wang L, Yang Q, Cui Z, Liu Q. Battery-free and wireless epidermal electrochemical system with all-printed stretchable electrode array for multiplexed in situ sweat analysis. Adv Mater Technol 2019;4:1800658.

    Article  CAS  Google Scholar 

  203. Yang Y, Song Y, Bo X, Min J, Pak OS, Zhu L, Wang M, Tu J, Kogan A, Zhang H, Hsiai TK, Li Z, Gao W. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol 2020;38:217.

    Article  CAS  Google Scholar 

  204. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 2014;26:992.

    Article  CAS  Google Scholar 

  205. Umrao S, Tabassian R, Kim J, Nguyen VH, Zhou Q, Nam S, Oh I-K. MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci Robot 2019;4:eaaw7797.

    Article  Google Scholar 

  206. Barsoum MW. The MN+1AXN phases: a new class of solids: Thermodynamically stable nanolaminates. Prog Solid State Chem 2000;28:201.

    Article  CAS  Google Scholar 

  207. Wang K, Lou Z, Wang L, Zhao L, Zhao S, Wang D, Han W, Jiang K, Shen G. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 2019;13:9139.

    Article  CAS  Google Scholar 

  208. Liao H, Guo X, Wan P, Yu G. Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv Funct Mater 2019;29:1904507.

    Article  CAS  Google Scholar 

  209. Levitt A, Zhang J, Dion G, Gogotsi Y, Razal JM. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv Funct Mater 2020;30:2000739.

    Article  CAS  Google Scholar 

  210. Jiang C, Wu C, Li X, Yao Y, Lan L, Zhao F, Ye Z, Ying Y, Ping J. All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy 2019;59:268.

    Article  CAS  Google Scholar 

  211. Yang K, Yin F, Xia D, Peng H, Yang J, Yuan W. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale 2019;11:9949.

    Article  CAS  Google Scholar 

  212. Bi P, Liu X, Yang Y, Wang Z, Shi J, Liu G, Kong F, Zhu B, Xiong R. Silver-nanoparticle-modified polyimide for multiple artificial skin-sensing applications. Adv Mater Technol 2019;4:1900426.

    Article  CAS  Google Scholar 

  213. Yu X, Xie Z, Yu Y, Lee J, Vazquez-Guardado A, Luan H, Ruban J, Ning X, Akhtar A, Li D, Ji B, Liu Y, Sun R, Cao J, Huo Q, Zhong Y, Lee C, Kim S, Gutruf P, Zhang C, Xue Y, Guo Q, Chempakasseril A, Tian P, Lu W, Jeong J, Yu Y, Cornman J, Tan C, Kim B, Lee K, Feng X, Huang Y, Rogers JA. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019;575:473.

    Article  CAS  Google Scholar 

  214. Pan S, Zhang F, Cai P, Wang M, He K, Luo Y, Li Z, Chen G, Ji S, Liu Z, Loh XJ, Chen X. Mechanically interlocked hydrogel–elastomer hybrids for on-skin electronics. Adv Funct Mater 2020;30:1909540.

    Article  CAS  Google Scholar 

  215. Lei Z, Wu P. Adaptable polyionic elastomers with multiple sensations and entropy-driven actuations for prosthetic skins and neuromuscular systems. Mater Horiz 2019;6:538.

    Article  CAS  Google Scholar 

  216. Wang X, Guo R, Liu J. Liquid metal based soft robotics: materials, designs, and applications. Adv Mater Technol 2019;4:1800549.

    Article  Google Scholar 

  217. Guo R, Wang H, Sun X, Yao S, Chang H, Wang H, Liu J, Zhang Y. Semiliquid metal enabled highly conductive wearable electronics for smart fabrics. ACS Appl Mater Interfaces 2019;11:30019.

    Article  CAS  Google Scholar 

  218. Ai Y, Lou Z, Chen S, Chen D, Wang ZM, Jiang K, Shen G. All rGO-on-PVDF-nanofibers based self-powered electronic skins. Nano Energy 2017;35:121.

    Article  CAS  Google Scholar 

  219. Redhai S, Pilgrim C, Gaspar P, Lv G, Lopes T, Riabinina O, Grenier T, Milona A, Chanana B, Swadling JB, Wang Y-F, Dahalan F, Yuan M, Wilsch-Brauninger M, Lin W-h, Dennison N, Capriotti P, Lawniczak MKN, Baines RA, Warnecke T, Windbichler N, Leulier F, Bellono NW, Miguel-Aliaga I. An intestinal zinc sensor regulates food intake and developmental growth. Nature 2020;580:263.

    Article  CAS  Google Scholar 

  220. He J, Wang W, Sun F, Shi W, Qi D, Wang K, Shi R, Cui F, Wang C, Chen X. Highly efficient phosphate scavenger based on well-dispersed La(OH)3 nanorods in polyacrylonitrile nanofibers for nutrient-starvation antibacteria. ACS Nano 2015;9:9292.

    Article  CAS  Google Scholar 

  221. de Oliveira MCA, da Silva FAG, da Costa MM, Rakov N, de Oliveira HP. Curcumin-loaded electrospun fibers: fluorescence and antibacterial activity. Adv Fiber Mater 2020;2:256.

    Article  CAS  Google Scholar 

  222. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 2015;112:5649.

    Article  CAS  Google Scholar 

  223. Weng R, Sun L, Jiang L, Li N, Ruan G, Li J, Du F. Electrospun graphene oxide–doped nanofiber-based solid phase extraction followed by high-performance liquid chromatography for the determination of tetracycline antibiotic residues in food samples. Food Anal Methods 2019;12:1594.

    Article  Google Scholar 

  224. Soto KM, Hernandez-Iturriaga M, Loarca-Pina G, Luna-Barcenas G, Mendoza S. Antimicrobial effect of nisin electrospun amaranth: pullulan nanofibers in apple juice and fresh cheese. Int J Food Microbiol 2019;295:25.

    Article  CAS  Google Scholar 

  225. Thiha A, Ibrahim F, Muniandy S, Dinshaw IJ, Teh SJ, Thong KL, Leo BF, Madou M. All-carbon suspended nanowire sensors as a rapid highly-sensitive label-free chemiresistive biosensing platform. Biosens Bioelectron 2018;107:145.

    Article  CAS  Google Scholar 

  226. Ding B. Advanced nanofiber materials and systems: solving global issues. Adv Fiber Mater 2020;2:45.

    Article  Google Scholar 

  227. Chapman J, Truong VK, Elbourne A, Gangadoo S, Cheeseman S, Rajapaksha P, Latham K, Crawford RJ, Cozzolino D. Combining chemometrics and sensors: toward new applications in monitoring and environmental analysis. Chem Rev 2020;120:6048.

    Article  CAS  Google Scholar 

  228. Zhao S, Sun Q, Gu Y, Yang W, Chen Y, Lin J, Dong M, Cheng H, Hu H, Guo Z. Enteromorpha prolifera polysaccharide based coagulant aid for humic acids removal and ultrafiltration membrane fouling control. Int J Biol Macromol 2020;152:576.

    Article  CAS  Google Scholar 

  229. Wang Q, Liu Z, Liu D, Liu G, Yang M, Cui F, Wang W. Ultrathin two-dimensional BiOBrxI1-x solid solution with rich oxygen vacancies for enhanced visible-light-driven photoactivity in environmental remediation. Appl Catal B 2018;236:222.

    Article  CAS  Google Scholar 

  230. Wang Q, Wang W, Zhong L, Liu D, Cao X, Cui F. Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation. Appl Catal B 2018;220:290.

    Article  CAS  Google Scholar 

  231. Wang M, Wang K, Yang Y, Liu Y, Yu D-G. Electrospun environment remediation nanofibers using unspinnable liquids as the sheath fluids: a review. Polymers 2020;12:103.

    Article  CAS  Google Scholar 

  232. Nel A. Air pollution-related illness: effects of particles. Science 2005;308:804.

    Article  CAS  Google Scholar 

  233. Huang R-J, Zhang Y, Bozzetti C, Ho K-F, Cao J-J, Han Y, Daellenbach KR, Slowik JG, Platt SM, Canonaco F, Zotter P, Wolf R, Pieber SM, Bruns EA, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, Haddad IE, Prévôt ASH. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014;514:218.

    Article  CAS  Google Scholar 

  234. Jimenez JL, Canagaratna MR, Donahue NM, Prevot ASH, Zhang Q, Kroll JH, DeCarlo PF, Allan JD, Coe H, Ng NL, Aiken AC, Docherty KS, Ulbrich IM, Grieshop AP, Robinson AL, Duplissy J, Smith JD, Wilson KR, Lanz VA, Hueglin C, Sun YL, Tian J, Laaksonen A, Raatikainen T, Rautiainen J, Vaattovaara P, Ehn M, Kulmala M, Tomlinson JM, Collins DR, Cubison MJ, Dunlea J, Huffman JA, Onasch TB, Alfarra MR, Williams PI, Bower K, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Salcedo D, Cottrell L, Griffin R, Takami A, Miyoshi T, Hatakeyama S, Shimono A, Sun JY, Zhang YM, Dzepina K, Kimmel JR, Sueper D, Jayne JT, Herndon SC, Trimborn AM, Williams LR, Wood EC, Middlebrook AM, Kolb CE, Baltensperger U, Worsnop DR. Evolution of organic aerosols in the atmosphere. Science 2009;326:1525.

    Article  CAS  Google Scholar 

  235. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015;525:367.

    Article  CAS  Google Scholar 

  236. Zhang Q, Jiang X, Tong D, Davis SJ, Zhao H, Geng G, Feng T, Zheng B, Lu Z, Streets DG, Ni R, Brauer M, van Donkelaar A, Martin RV, Huo H, Liu Z, Pan D, Kan H, Yan Y, Lin J, He K, Guan D. Transboundary health impacts of transported global air pollution and international trade. Nature 2017;543:705.

    Article  CAS  Google Scholar 

  237. Liang S, Altaf N, Huang L, Gao Y, Wang Q. Electrolytic cell design for electrochemical CO2 reduction. J CO2 Util 2020;35:90.

    Article  CAS  Google Scholar 

  238. Tian J, Wang C, Yu F, Zhou X, Zhang J, Yang S, Dan J, Cao P, Dai B, Wang Q, Zhang J. Mn-Ce-Fe-Al mixed oxide nanoparticles via a high shear mixer facilitated coprecipitation method for low temperature selective catalytic reduction of NO with NH3. Appl Catal A 2019;586:117237.

    Article  CAS  Google Scholar 

  239. Liu H, Zhang S, Liu L, Yu J, Ding B. A fluffy dual-network structured nanofiber/net filter enables high-efficiency air filtration. Adv Funct Mater 2019;29:1904108.

    Article  CAS  Google Scholar 

  240. Bosch P, Fernández A, Salvador EF, Corrales T, Catalina F, Peinado C. Polyurethane-acrylate based films as humidity sensors. Polymer 2005;46:12200.

    Article  CAS  Google Scholar 

  241. Chen Z, Lu C. Humidity sensors: a review of materials and mechanisms. Sens Lett 2005;3:274.

    Article  CAS  Google Scholar 

  242. Zeng F-W, Liu X-X, Diamond D, Lau KT. Humidity sensors based on polyaniline nanofibres. Sens Actuators B 2010;143:530.

    Article  CAS  Google Scholar 

  243. Dong Z, Zhang N, Wang Y, Wu J, Gan Q, Li W. Photopatternable nanolayered polymeric films with fast tunable color responses triggered by humidity. Adv Funct Mater 2019;29:1904453.

    Article  CAS  Google Scholar 

  244. Li P, Li Y, Ying BY, Yang MJ. Electrospun nanofibers of polymer composite as a promising humidity sensitive material. Sens Actuators B 2009;141:390.

    Article  CAS  Google Scholar 

  245. Alwis L, Sun T, Grattan KTV. Optical fibre-based sensor technology for humidity and moisture measurement: review of recent progress. Measurement 2013;46:4052.

    Article  Google Scholar 

  246. Vu DL, Li Y-Y, Lin T-H, Wu M-C. Fabrication and humidity sensing property of UV/ozone treated PANI/PMMA electrospun fibers. J Taiwan Inst Chem Eng 2019;99:250.

    Article  CAS  Google Scholar 

  247. Choi S, Lee HM, Kim HS. Effect of molecular weight on humidity-sensitive characteristics of electrospun polyethylene oxide. Sens Actuators A 2019;294:194.

    Article  CAS  Google Scholar 

  248. Araújo ES, Leão VNS. TiO2/WO3 heterogeneous structures prepared by electrospinning and sintering steps: characterization and analysis of the impedance variation to humidity. J Adv Ceram 2019;8:238.

    Article  CAS  Google Scholar 

  249. Edwards PM, Brown SS, Roberts JM, Ahmadov R, Banta RM, deGouw JA, Dubé WP, Field RA, Flynn JH, Gilman JB, Graus M, Helmig D, Koss A, Langford AO, Lefer BL, Lerner BM, Li R, Li S-M, McKeen SA, Murphy SM, Parrish DD, Senff CJ, Soltis J, Stutz J, Sweeney C, Thompson CR, Trainer MK, Tsai C, Veres PR, Washenfelder RA, Warneke C, Wild RJ, Young CJ, Yuan B, Zamora R. High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature 2014;514:351.

    Article  CAS  Google Scholar 

  250. Megías-Sayago C, Lara-Ibeas I, Wang Q, Le Calvé S, Louis B. Volatile organic compounds (VOCs) removal capacity of ZSM-5 zeolite adsorbents for near real-time BTEX detection. J Environ Chem Eng 2020;8:103724.

    Article  CAS  Google Scholar 

  251. Ge JC, Choi NJ. Performance of electrospun nanofibrous membranes for trapping of BTX aromatic hydrocarbons and heavy metal ions: Mechanisms, isotherms and kinetics. J Cleaner Prod 2019;217:388.

    Article  CAS  Google Scholar 

  252. Sun YJ, Wang ZP, Wang WD, Li G, Li PW, Lian K, Zhang WD, Zhuiykov S, Hu J, Chen L. Electrospinning preparation of Pd@Co3O4-ZnO composite nanofibers and their highly enhanced VOC sensing properties. Mater Res Bull 2019;109:255.

    Article  CAS  Google Scholar 

  253. Can N. Electrospun CuO nanofibers for room temperature volatile organic compound sensing applications. Mater Chem Phys 2018;213:6.

    Article  CAS  Google Scholar 

  254. Xiang J, Chen X, Zhang XK, Gong L, Zhang YM, Zhang KY. Preparation and characterization of Ba-doped LaFeO3 nanofibers by electrospinning and their ethanol sensing properties. Mater Chem Phys 2018;213:122.

    Article  CAS  Google Scholar 

  255. Zheng W, Lu XF, Wang W, Dong B, Zhang HN, Wang ZJ, Xu XR, Wang C. A rapidly responding sensor for methanol based on electrospun In2O3-SnO2 nanofibers. J Am Ceram Soc 2010;93:15.

    Article  CAS  Google Scholar 

  256. Lu Y, Yu G, Wei X, Zhan C, Jeon J-W, Wang X, Jeffryes C, Guo Z, Wei S, Wujcik EK. Fabric/multi-walled carbon nanotube sensor for portable on-site copper detection in water. Adv Compos Hybrid Mater 2019;2:711.

    Article  CAS  Google Scholar 

  257. Li Y, Wen YA, Wang LH, He JX, Al-Deyab SS, El-Newehy M, Yu JY, Ding B. Simultaneous visual detection and removal of lead(II) ions with pyromellitic dianhydride-grafted cellulose nanofibrous membranes. J Mater Chem A 2015;3:18180.

    Article  CAS  Google Scholar 

  258. Li Y, Ding B, Sun G, Ke T, Chen J, Al-Deyab SS, Yu J. Solid-phase pink-to-purple chromatic strips utilizing gold probes and nanofibrous membranes combined system for lead (II) assaying. Sens Actuators B 2014;204:673.

    Article  CAS  Google Scholar 

  259. Ondigo DA, Tshentu ZR, Torto N. Electrospun nanofiber based colorimetric probe for rapid detection of Fe2+ in water. Anal Chim Acta 2013;804:228.

    Article  CAS  Google Scholar 

  260. Teodoro KBR, Shimizu FM, Scagion VP, Correa DS. Ternary nanocomposites based on cellulose nanowhiskers, silver nanoparticles and electrospun nanofibers: use in an electronic tongue for heavy metal detection. Sens Actuators B 2019;290:387.

    Article  CAS  Google Scholar 

  261. Huang Y, Ma H, Wang S, Shen M, Guo R, Cao X, Zhu M, Shi X. Efficient catalytic reduction of hexavalent chromium using palladium nanoparticle-immobilized electrospun polymer nanofibers. ACS Appl Mater Interfaces 2012;4:3054.

    Article  CAS  Google Scholar 

  262. Dai Y, Formo E, Li H, Xue J, Xia Y. Surface-functionalized electrospun titania nanofibers for the scavenging and recycling of precious metal ions. Chemsuschem 2016;9:2912.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deng-Guang Yu or Caoxing Huang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S., Zhao, K., Yu, DG. et al. Advances in Biosensing and Environmental Monitoring Based on Electrospun Nanofibers. Adv. Fiber Mater. 4, 404–435 (2022). https://doi.org/10.1007/s42765-021-00129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00129-0

Keywords

Navigation