Skip to main content
Log in

A multiphase approach for pyrolysis modelling of polymeric materials

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

In this study, a multiphase pyrolysis model has been proposed under the large eddy simulation (LES) framework incorporating moving boundary surface tracking, char formation, and detailed chemical kinetics combustion modelling. The proposed numerical model was applied to simulate the cone calorimeter test of two kinds of materials: (i) pinewood (charring) and (ii) low-density polyethylene (non-charring). Using a cone calorimeter setup, good agreement has been achieved between the computational and the experimental results. The model is capable of predicting the formation of the char layer and thus replicating the flame suppressing thermal and barrier effects. Furthermore, with the application of detailed chemical kinetics, the fire model was able to aptly predict the generation of asphyxiant gas such as CO/CO2 during the burning process. However, the pinewood experiments showed significant CO/CO2 emissions post flame extinguishment attributed to char oxidation effects, which were not considered by the fire model. Despite the limitation, the fully coupled LES model proposed in this study was capable of predicting the fluid mechanics and heat transfer for the turbulent reacting flow, solid-phase decomposition, and gaseous products under flaming conditions. In the future, it can be further extended to include char oxidation mechanisms to improve predictions for charring materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

pre-exponential factor

b* nuc :

normalised radical nuclei concentration

c :

material component fraction (pyrolysis kinetics)

C :

modelling constants

C p :

specific heat of constant pressure

d p :

soot particle mean diameter

D :

diffusion term

E :

activation energy

f :

mass fraction

F :

mixture fraction

F’ :

mixture fraction variance

\(\vec g\) :

gravitational acceleration force

k perm :

permeability coefficient

k t :

thermal conductivity

K :

empirical constant

m :

mass

M :

combustion flamelet library

M p :

soot average molecular weight

M s :

soot mass concentration

n :

exponential factor (pyrolysis kinetics)

N s :

soot number density

P :

sum of the partial pressures of gray gases

P(F):

beta probability density function (PDF)

r :

reaction rate

R :

universal gas constant

S :

source term

\({\tilde S_{ij}}\) :

strain rate

S d ij :

stress tensor

T :

temperature

ũ :

mean velocity component

\(\vec u\) :

velocity vector

v res :

residual mass fraction

V :

unit cell volume

X :

mole fraction

Y :

mass fraction

Δ:

filtered width

∇:

differential operator nabla

δ ij :

Kronecker delta

ρ :

density of gas mixture

φ :

porosity

ϕ :

transport variable

μ :

dynamic viscosity

μ T :

turbulent viscosity

σ T :

turbulent schmidt number

χ :

scalar dissipation

d:

stress tensor

c:

char

comb:

combustion

C2H2 :

acetylene

fuel:

fuel source

g:

gas volatile

i, j, k :

sequential indicators

OH:

hydroxyl radical

res:

residual

s:

solid

soot:

soot

w:

WALE constant

v:

volume fraction

α :

soot particle nucleation

β :

soot coagulation

γ :

surface growth of soot

ω :

soot particle oxidation

References

  • Akahira T., Sunose, T. 1971. Trans joint convention of four electrical institutes. Res Rep Chiba Inst Technol, 16: 22–31.

    Google Scholar 

  • Boonmee, N., Quintiere, J. G. 2005. Glowing ignition of wood: The onset of surface combustion. Proc Combust Inst, 30: 2303–2310.

    Article  Google Scholar 

  • Brookes, S. J., Moss, J. B. 1999. Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames. Combust Flame, 116: 486–503.

    Article  Google Scholar 

  • Chen, T. B. Y., Yuen, A. C. Y., Wang, C., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Chan, Q. N., Yang, W. 2018a. Predicting the fire spread rate of a sloped pine needle board utilizing pyrolysis modelling with detailed gas-phase combustion. Int J Heat Mass Transf, 125: 310–322.

    Article  Google Scholar 

  • Chen, T. B. Y., Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Chan, Q. N., Yang, W., Lu, H. 2018b. Numerical study of fire spread using the level-set method with large eddy simulation incorporating detailed chemical kinetics gas-phase combustion model. J Comput Sci, 24: 8–23.

    Article  Google Scholar 

  • Chen, Q., Chen, T. B. Y., Yuen, A. C. Y., Wang, C., Chan, Q. N., Yeoh, G. H. 2020. Investigation of door width towards flame tilting behaviours and combustion species in compartment fire scenarios using large eddy simulation. Int J Heat Mass Transf, 150: 119373.

    Article  Google Scholar 

  • Chen, T. B. Y., Yuen, A. C. Y., Lin, B., Liu, L., Lo, A. L. P., Chan, Q. N., Zhang, J., Cheung, S. C. P., Yeoh, G. H. 2021. Characterisation of pyrolysis kinetics and detailed gas species formations of engineering polymers via reactive molecular dynamics (ReaxFF). J Anal Appl Pyrolysis, 153: 104931.

    Article  Google Scholar 

  • Deeny, S., Lane, B., Hadden, R., Laurence, A. T. 2018. Fire safety design in modern timber buildings. J Inst Struct Eng, 96: 48–53.

    Google Scholar 

  • Di Blasi, C. 2008. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci, 34: 47–90.

    Article  Google Scholar 

  • Di Nenno, P. J., Drysdale, D., Beyler, C. L., Walton, D. W. 2002. SFPE Handbook of Fire Protection Engineering, 3rd edn. Quincy, MA, USA: National Fire Protection Association.

    Google Scholar 

  • Ding, Y., Wang, C., Lu, S. 2015. Modeling the pyrolysis of wet wood using FireFOAM. Energy Convers Manag, 98: 500–506.

    Article  Google Scholar 

  • Drysdale, D. 2011. An Introduction to Fire Dynamics. Chichester, UK: John Wiley Sons.

    Book  Google Scholar 

  • Kee, R. J., Rupley, F. M., Miller, J. A., Coltrin, M. E., Grcar, J. F., Meeks, E., Moffat, H. K., Lutz, A. E., Dixon-Lewis, G., Smooke M. D., et al. 2000. CHEMKIN Collection, Release 3.6. San Diego, CA, USA: Reaction Design Inc. Available at https://www3.nd.edu/~powers/ame.60636/chemkin2000.pdf.

  • Kent, J., Honnery, D. 1990. A soot formation rate map for a laminar ethylene diffusion flame. Combust Flame, 79: 287–298.

    Article  Google Scholar 

  • Kissinger, H. E. 1957. Reaction kinetics in differential thermal analysis. Anal Chem, 29: 1702–1706.

    Article  Google Scholar 

  • Lautenberger, C. W. 2007. A generalized pyrolysis model for combustible solid. Available at https://escholarship.org/uc/item/7wz5m7dg.

  • Lautenberger, C., Fernandez-Pello, C. 2009. Generalized pyrolysis model for combustible solids. Fire Saf J, 44: 819–839.

    Article  Google Scholar 

  • Leung, K. M., Lindstedt, R. P., Jones, W. P. 1991. A simplified reaction mechanism for soot formation in nonpremixed flames. Combust Flame, 87: 289–305.

    Article  Google Scholar 

  • Lin, B., Yuen, A. C. Y., Chen, T. B. Y., Yu, B., Yang, W., Zhang, J., Yao, Y., Wu, S., Wang, C., Yeoh, G. H. 2021. Experimental and numerical perspective on the fire performance of MXene/Chitosan/Phytic acid coated flexible polyurethane foam. Sci Rep, 11: 4684.

    Article  Google Scholar 

  • Liu, H., Wang, C., de Cachinho Cordeiro, I. M., Yuen, A. C. Y., Chen, Q., Chan, Q., Kook, S., Yeoh, G. H. 2020. Critical assessment on operating water droplet sizes for fire sprinkler and water mist systems. J Build Eng, 28: 100999.

    Article  Google Scholar 

  • Liu, H., Yuen, A. C. Y., de Cachinho Cordeiro, I. M., Han, Y., Chen, T. B. Y., Chan, Q., Kook, S., Yeoh, G. H. 2021. A novel stochastic approach to study water droplet/flame interaction of water mist systems. Numer Heat Tr A-Appl, 79: 570–593.

    Article  Google Scholar 

  • Ma, Z., Chen, D., Gu, J., Bao, B., Zhang, Q. 2015. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods. Energy Convers Manag, 89: 251–259.

    Article  Google Scholar 

  • Mallet, V., Keyes, D. E., Fendell, F. E. 2009. Modeling wildland fire propagation with level set methods. Comput Math Appl, 57: 1089–1101.

    Article  MathSciNet  MATH  Google Scholar 

  • McGrattan, K., McDermott, R., Weinschenk, C., Forney, G. 2013. Fire Dynamics Simulator, Technical Reference Guide, 6th edn. Gaithersburg, MD, USA: National Institute of Standards and Technology.

    Google Scholar 

  • McGrattan, K., McDermott, R., Mell, W., Forney, G., Floyd, J., Hostikka, S., Matala, A. 2010. Modeling the burning of complicated objects using Lagrangian particles. In: Proceedings of the 12th International Interflam Conference, 743–753.

  • Mishra, G., Kumar, J., Bhaskar, T. 2015. Kinetic studies on the pyrolysis of pinewood. Bioresour Technol, 182: 282–288.

    Article  Google Scholar 

  • Nguyen, Q., Ngo, T., Mendis, P., Tran, P. 2013. Composite materials for next generation building façade systems. Civ Eng Archit, 1: 88–95.

    Article  Google Scholar 

  • Nicoud, F., Ducros, F. 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul Combust, 62: 183–200.

    Article  MATH  Google Scholar 

  • Oliver, C. D., Nassar, N. T., Lippke, B. R., McCarter, J. B. 2014. Carbon, fossil fuel, and biodiversity mitigation with wood and forests. J Sustain Forest, 33: 248–275.

    Article  Google Scholar 

  • Pau, D. S. W., Fleischmann, C. M., Spearpoint, M. J., Li, K. Y. 2013. Determination of kinetic properties of polyurethane foam decomposition for pyrolysis modelling. J Fire Sci, 31: 356–384.

    Article  Google Scholar 

  • Pope, N. D., Bailey, C. G. 2006. Quantitative comparison of FDS and parametric fire curves with post-flashover compartment fire test data. Fire Saf J, 41: 99–110.

    Article  Google Scholar 

  • Rein, G., Lautenberger, C., Fernandez-Pello, A. C., Torero, J. L., Urban, D. L. 2006. Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combust Flame, 146: 95–108.

    Article  Google Scholar 

  • Richter, F., Kotsovinos, P., Rackauskaite, E., Rein, G. 2021. Thermal response of timber slabs exposed to travelling fires and traditional design fires. Fire Technol, 57: 393–414.

    Article  Google Scholar 

  • Rochoux, M. C., Delmotte, B., Cuenot, B., Ricci, S., Trouvé, A. 2013. Regional-scale simulations of wildland fire spread informed by real-time flame front observations. Proc Combust Inst, 34: 2641–2647.

    Article  Google Scholar 

  • Sasaki, T., Igari, M., Kuwana, K. 2018. Fire whirls behind an L-shaped wall in a crossflow. Combust Flame, 197: 197–203.

    Article  Google Scholar 

  • Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner Jr., W. C., et al. 2000. GRI-Mech 3.0. Available at http://www.me.berkeley.edu/gri_mech/.

  • Snegirev, A. Y., Talalov, V. A., Stepanov, V. V., Harris, J. N. 2013. A new model to predict pyrolysis, ignition and burning of flammable materials in fire tests. Fire Saf J, 59: 132–150.

    Article  Google Scholar 

  • Stamm, A. J. 1956. Thermal degradation of wood and cellulose. Ind Eng Chem, 48: 413–417.

    Article  Google Scholar 

  • Stoliarov, S. I., Crowley, S., Lyon, R. E., Linteris, G. T. 2009. Prediction of the burning rates of non-charring polymers. Combust Flame, 156: 1068–1083.

    Article  Google Scholar 

  • Stoliarov, S. I., Crowley, S., Walters, R. N., Lyon, R. E. 2010. Prediction of the burning rates of charring polymers. Combust Flame, 157: 2024–2034.

    Article  Google Scholar 

  • Sun, X., Hu, L., Li, Y., Huo, R., Chow, W. K., Fong, N. K., Lui, G. C., Li, K. 2009. Studies on smoke movement in stairwell induced by an adjacent compartment fire. Appl Therm Eng, 29: 2757–2765.

    Article  Google Scholar 

  • Trouvé, A., Wang, Y. 2010. Large eddy simulation of compartment fires. Int J Comput Fluid Dyn, 24: 449–466.

    Article  MATH  Google Scholar 

  • Van Maele, K., Merci, B. 2008. Application of RANS and LES field simulations to predict the critical ventilation velocity in longitudinally ventilated horizontal tunnels. Fire Saf J, 43: 598–609.

    Article  Google Scholar 

  • Wang, X., Fleischmann, C., Spearpoint, M., Li, K. 2017. A simple hand calculation method to estimate the pyrolysis kinetics of plastic and wood materials. In: Fire Science and Technology 2015. Harada K., Matsuyama K., Himoto K., et al. Eds. Singapore: Springer, 455–462.

    Chapter  Google Scholar 

  • Wang, C., Yuen, A. C. Y., Chan, Q., Chen, T. B. Y., Yang, W., Cheung, S. C. P., Yeoh, G. H. 2020a. Characterisation of soot particle size distribution through population balance approach and soot diagnostic techniques for a buoyant non-premixed flame. J Energy Inst, 93: 112–128.

    Article  Google Scholar 

  • Wang, C., Yuen, A. C. Y., Chan, Q., Chen, T. B. Y., Yip, H. L., Cheung, S. C. P., Kook, S., Yeoh, G. H. 2020b. Numerical study of the comparison of symmetrical and asymmetrical eddy-generation scheme on the fire whirl formulation and evolution. Appl Sci, 10: 318.

    Article  Google Scholar 

  • Yeoh, G. H., Yuen, K. K. 2009. Computational Fluid Dynamics in Fire Engineering: Theory, Modelling and Practice. Burlington, MA, USA: Butterworth-Heinemann.

    Google Scholar 

  • Yuen, R. K. K., Yeoh, G. H., de Vahl Davis, G., Leonardi, E. 2007a. Modelling the pyrolysis of wet wood — I. Three-dimensional formulation and analysis. Int J Heat Mass Transf, 50: 4371–4386.

    Article  MATH  Google Scholar 

  • Yuen, R. K. K., Yeoh, G. H., de Vahl Davis, G., Leonardi, E. 2007b. Modelling the pyrolysis of wet wood — II. Three-dimensional cone calorimeter simulation. Int J Heat Mass Transf, 50: 4387–4399.

    Article  MATH  Google Scholar 

  • Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Barber, T. J. 2016a. Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment. Int J Heat Mass Transf, 96: 171–188.

    Article  Google Scholar 

  • Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Chen, T. 2016b. Study of three LES subgrid-scale turbulence models for predictions of heat and mass transfer in large-scale compartment fires. Numer Heat Tr A-Appl, 69: 1223–1241.

    Article  Google Scholar 

  • Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Chen, T. B. Y., Chan, Q. N., Wang, C., Li, D. D. 2017. Comparison of detailed soot formation models for sooty and non-sooty flames in an under-ventilated ISO room. Int J Heat Mass Transf, 115: 717–729.

    Article  Google Scholar 

  • Yuen, A. C. Y., Chen, T. B. Y., Yeoh, G. H., Yang, W., Cheung, S. C. P., Cook, M., Yu, B., Chan, Q. N., Yip, H. L. 2018a. Establishing pyrolysis kinetics for the modelling of the flammability and burning characteristics of solid combustible materials. J Fire Sci, 36: 494–517.

    Article  Google Scholar 

  • Yuen, A. C. Y., Yeoh, G. H., Cheung, S. C. P., Chan, Q. N., Chen, T. B. Y., Yang, W., Lu, H. 2018b. Numerical study of the development and angular speed of a small-scale fire whirl. J Comput Sci, 27: 21–34.

    Article  Google Scholar 

  • Yuen, A. C. Y., Chen, T. B. Y., Wang, C., Wei, W., Kabir, I., Vargas, J. B., Chan, Q. N., Kook, S., Yeoh, G. H. 2020. Utilising genetic algorithm to optimise pyrolysis kinetics for fire modelling and characterisation of chitosan/graphene oxide polyurethane composites. Compos Part B: Eng, 182: 107619.

    Article  Google Scholar 

Download references

Acknowledgements

The study is sponsored by the Australian Research Council (ARC Industrial Training Transformation Centre IC1701 00032) and the Australian Government Research Training Program Scholarship. All financial and technical supports are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Chun Yin Yuen.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T.B.Y., Liu, L., Yuen, A.C.Y. et al. A multiphase approach for pyrolysis modelling of polymeric materials. Exp. Comput. Multiph. Flow 5, 199–211 (2023). https://doi.org/10.1007/s42757-021-0122-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-021-0122-3

Keywords

Navigation