Skip to main content
Log in

Multiphase CFD modelling for enclosure fires—A review on past studies and future perspectives

  • Review Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

Modern buildings and structures are commonly equipped with fire safety detection and protection systems. Owing to the complexity in building architectures, performance-based fire engineering designs are often applied to achieve safety compliance criteria in stipulated fire events. With the uprising popularity of computer simulation fire predictive models benefited by the rapid improvement in computing speed and modelling techniques, the use of computational fluid dynamics (CFD) based fire field models has become an integrated component in fire tenability and assessment studies. This article delivers a comprehensive review on the history, past developments, and current state-of-the-art of CFD models for enclosure fires, as well as providing an in-depth review on the advancement in other sub-modelling components including turbulence, combustion, radiation, and soot models. Additionally, two types of multiphase modelling approaches involving solid-gas and liquid-gas phase models are reviewed. As for the preceding, the consideration of the solid phase combustibles is generally achieved via pyrolysis modelling under the context of CFD. Recent advancements in CFD-based pyrolysis studies are extensively discussed, including the consideration of porous media, charring layer formation, and kinetics search algorithms to describe the solid decomposition and charring processes. Meanwhile, fire suppression models involving the discrete phase model (DPM) approach are reviewed. This includes previous developments in simulation methods of water droplets, coupling approaches with the fire dynamics in the large eddy simulation (LES) framework. Finally, a future perspective regarding the need to develop a melting/dripping sub-model for building materials is discussed, whose reaction kinetics can be supported by molecular dynamics (MD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akahira, T., Sunuse, T. T. 1971. Joint convention of four electrical institutes. Research Report, Chiba Institute of Technology, Chiba, Japan. Available at https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=118643.

  • Alander, J. T., Autere, A., Mäntykoski, J., Keskinen, K. I. 1994. Distributed genetic algorithm for fitting of model parameters of chemical reaction kinetics. In: Proceedings of the 2nd Finnish Workshop on Genetic Algorithms and Their Applications.

  • Apte, V., Green, A., Kent, J. 1991. Pool fire plume flow in a large-scale wind tunnel. Fire Saf Sci, 3: 425–434.

    Article  Google Scholar 

  • Baum, H. R., Ezekoye, O. A., McGrattan, K. B., Rehm, R. G. 1994. Mathematical modeling and computer simulation of fire phenomena. Theor Comput Fluid Dyn, 6: 125–139.

    Article  MATH  Google Scholar 

  • Bji, T., Zadeh, S. E., Maragkos, G., Merci, B. 2017. Influence of the particle injection rate, droplet size distribution and volume flux angular distribution on the results and computational time of water spray CFD simulations. Fire Saf J, 91: 586–595.

    Article  Google Scholar 

  • Bertolino, A., Fürst, M., Stagni, A., Frassoldati, A., Pelucchi, M., Cavallotti, C., Faravelli, T., Parente, A. 2021. An evolutionary, data-driven approach for mechanism optimization: Theory and application to ammonia combustion. Combust Flame, 229: 111366.

    Article  Google Scholar 

  • Bilger, R. W., Kent, J. H. 1972. Measurements in turbulent diffusion flames. Report F41. University of Sydney, Australia.

    Google Scholar 

  • Bilger, R. W. 1980. Turbulent flows with nonpremixed reactants. In: Turbulent Reacting Flows. Libby, P., Williams, F. Eds. Berlin Heidelberg, Germany: Springer, 65–113.

    Chapter  Google Scholar 

  • Boonmee, N., Quintiere, J. G. 2005. Glowing ignition of wood: The onset of surface combustion. Proc Combust Inst, 30: 2303–2310.

    Article  Google Scholar 

  • Boussinesq, J. 1877. Théorie de I’écoulement tourbillant. Mem Acad Sci, 23: 46. (in French)

    Google Scholar 

  • Bromann, M. 2001. Fire sprinklers: Their history and background. In: The Design and Layout of Fire Sprinkler Systems. Boca Raton, FA, USA: CRC Press, 13–16.

    Chapter  Google Scholar 

  • Brookes, S. J., Moss, J. B. 1999. Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames. Combust Flame, 116: 486–503.

    Article  Google Scholar 

  • Burke, S. P., Schumann, T. E. W. 1928. Diffusion flames. Industrial & Engineering Chemistry, 20: 998–1004.

    Article  Google Scholar 

  • Chandrasekhar, S. 1960. Radiative Transfer. New York, NY, USA: Dover.

    MATH  Google Scholar 

  • Chen, C. J., Hsieh, W. D., Hu, W. C., Lai, C., Lin, T. 2010. Experimental investigation and numerical simulation of a furnished office fire. Build Environ, 45: 2735–2742.

    Article  Google Scholar 

  • Chen, Z., Wen, J., Xu, B., Dembele, S. 2014. Large eddy simulation of a medium-scale methanol pool fire using the extended eddy dissipation concept. Int J Heat Mass Transf, 70: 389–408.

    Article  Google Scholar 

  • Chen, T. B. Y., Yuen, A. C. Y., Wang, C., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Chan, Q. N., Yang, W. 2018a. Predicting the fire spread rate of a sloped pine needle board utilizing pyrolysis modelling with detailed gas-phase combustion. Int J Heat Mass Transf, 125: 310–322.

    Article  Google Scholar 

  • Chen, T. B. Y., Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Cheung, S. C., Chan, Q. N., Yang, W., Lu, H. 2018b. Numerical study of fire spread using the level-set method with large eddy simulation incorporating detailed chemical kinetics gas-phase combustion model. J Comput Sci, 24: 8–23.

    Article  Google Scholar 

  • Chen, T. B. Y., Yuen, A. C. Y., Yeoh, G. H., Yang, W., Chan, Q. N. 2019. Fire risk assessment of combustible exterior cladding using a collective numerical database. Fire, 2: 11.

    Article  Google Scholar 

  • Chen, Q., Chen, T. B. Y., Yuen, A. C. Y., Wang, C., Chan, Q. N., Yeoh, G. H. 2020. Investigation of door width towards flame tilting behaviours and combustion species in compartment fire scenarios using large eddy simulation. Int J Heat Mass Transf, 150: 119373.

    Article  Google Scholar 

  • Chen, T. B. Y., Yuen, A. C. Y., Lin, B., Liu, L., Lo, A. L. P., Chan, Q. N., Zhang, J., Cheung, S. C. P., Yeoh, G. H. 2021. Characterisation of pyrolysis kinetics and detailed gas species formations of engineering polymers via reactive molecular dynamics ReaxFF. J Anal Appl Pyrolysis, 153: 104931.

    Article  Google Scholar 

  • Cheung, S. C. P., Yuen, R. K. K., Yeoh, G. H., Cheng, G. W. Y. 2004. Contribution of soot particles on global radiative heat transfer in a two-compartment fire. Fire Saf J, 39: 412–428.

    Article  Google Scholar 

  • Cheung, A. L. K., Lee, E. W. M., Yuen, R. K. K., Yeoh, G. H., Cheung, S. C. P. 2007a. Capturing the pulsation frequency of a buoyant pool fire using the large eddy simulation approach. Numer Heat Tr A-Appl, 53: 561–576.

    Article  Google Scholar 

  • Cheung, S. C. P., Yeoh, G. H., Cheung, A. L. K., Yuen, R. K. K., Lo, S. M. 2007b. Flickering behavior of turbulent buoyant fires using large-eddy simulation. Numer Heat Tr A-Appl, 52: 679–712.

    Article  Google Scholar 

  • Cheung, S. C. P., Yeoh, G. H. 2009. A fully-coupled simulation of vortical structures in a large-scale buoyant pool fire. Int J Therm Sci, 48: 2187–2202.

    Article  Google Scholar 

  • Chow, W. K., Wong, W. K. 1991. A study of the fire aspect of atrium buildings in Hong Kong. In: Fire Safety Science: Proceedings of the Third International Symposium. New York, NY, USA: Taylor & Francis.

    Google Scholar 

  • Chow, W. K. 1993. Numerical studies on the transient behaviour of a fire plume and ceiling jet. Math Comput Model, 17: 71–79.

    Article  MATH  Google Scholar 

  • Chow, W. K., Li, J. 2007. Numerical simulations on thermal plumes with k−ε types of turbulence models. Build Environ, 42: 2819–2828.

    Article  Google Scholar 

  • Consalvi, J. L. 2012. Influence of turbulence-radiation interactions in laboratory-scale methane pool fires. Int J Therm Sci, 60: 122–130.

    Article  Google Scholar 

  • Cook, A. W., Rileym, J. J. 1998. Subgrid-scale modeling for turbulent reacting flows. Combust Flame, 112: 593–606.

    Article  Google Scholar 

  • Cox, G. 1983. A field model of fire and its application to nuclear containment problems. CSNI Repprt No. 83. Los Alamos Nalional Laboratory.

  • Cox, G., Kumar, S. 1987. Field modelling of fire in forced ventilated enclosures. Combust Sci Technol, 52: 7–23.

    Article  Google Scholar 

  • Cox, G., Chitty, R., Kumar, S. 1989. Fire modelling and the King’s cross fire investigation. Fire Saf J, 15: 103–106.

    Article  Google Scholar 

  • Criado, J. M., Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A. 2008. Critical study of the isoconversional methods of kinetic analysis. J Therm Anal Calorim, 92: 199–203.

    Article  Google Scholar 

  • Darcy, H. 1856. Les fontaines Publiques de la ville de Dijon. Paris, France: Victor Dalmont. (in French)

  • Deardorff, J. W. 1970. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech, 41: 453–480.

    Article  MATH  Google Scholar 

  • Di Blasi, C. 1993. Modeling and simulation of combustion processes of charring and non-charring solid fuels. Prog Energy Combust Sci, 19: 71–104.

    Article  Google Scholar 

  • Di Blasi, C., Wichman, I. S. 1995. Effects of solid-phase properties on flames spreading over composite materials. Combust Flame, 102: 229–240.

    Article  Google Scholar 

  • Ding, Y., Wang, C., Lu, S. 2014. Large eddy simulation of fire spread. Procedia Eng, 71: 537–543.

    Article  Google Scholar 

  • Ding, Y., Wang, C., Lu, S. 2015. Modeling the pyrolysis of wet wood using FireFOAM. Energy Convers Manag, 98: 500–506.

    Article  Google Scholar 

  • Ding, Y., Stoliarov, S. I., Kraemer, R. H. 2019. Pyrolysis model development for a polymeric material containing multiple flame retardants: Relationship between heat release rate and material composition. Combust Flame, 202: 43–57.

    Article  Google Scholar 

  • Drysdale, D. 1986. An Introduction to Fire Dynamics. London, UK: John Wiley & Sons.

    Google Scholar 

  • Drysdale, D. 2011. An Introduction to Fire Dynamics, 3rd Edition. London, UK: John Wiley & Sons.

    Book  Google Scholar 

  • Elghobashi, S. E. 1974. Characteristics of gaseous turbulent diffusion flames in cylindrical chambers. Ph.D. Thesis. London University, UK.

    Google Scholar 

  • Elliott, L., Ingham, D. B., Kyne, A. G., Mera, N. S., Pourkashanian, M., Wilson, C. W. 2004. Genetic algorithms for optimisation of chemical kinetics reaction mechanisms. Prog Energy Combust Sci, 30: 297–328.

    Article  MATH  Google Scholar 

  • Fang, X., Yuen, A. C. Y., Yeoh, G. H., Lee, E. W. M., Cheung, S. C. P. 2020. Capturing the swirling vortex and the impact of ventilation conditions on small-scale fire whirls. Appl Sci, 10: 3428.

    Article  Google Scholar 

  • Fletcher, D. F., Kent, J. H., Apte, V. B., Green, A. R. 1994. Numerical simulations of smoke movement from a pool fire in a ventilated tunnel. Fire Saf J, 23: 305–325.

    Article  Google Scholar 

  • Foster, J. A. 2001. Evolutionary computation. Nat Rev Genet, 2: 428–436.

    Article  Google Scholar 

  • Frenklach, M., Wang, H. 1991. Detailed modeling of soot particle nucleation and growth. Symp Int Combust, 23: 1559–1566.

    Article  Google Scholar 

  • Friedman, H. L. 1964. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Pol Sym, 6: 183–195.

    Article  Google Scholar 

  • Gascoin, N., Romagnosi, L., Fedioun, I., Steelant, J., Fau, G., Bouchez, M. 2013. Pyrolysis in porous media: Part 2. Numerical analysis and comparison to experiments. J Porous Media, 16: 857–873.

    Article  Google Scholar 

  • Germano, M., Piomelli, U., Moin, P., Cabot, W. H. 1991. A dynamic subgrid-scale eddy viscosity model. Phys Fluids A-Fluid, 3: 1760–1765.

    Article  MATH  Google Scholar 

  • Grange, N., Chetehouna, K., Gascoin, N., Coppalle, A., Reynaud, I., Senave, S. 2018. One-dimensional pyrolysis of carbon based composite materials using FireFOAM. Fire Saf J, 97: 66–75.

    Article  Google Scholar 

  • Gutiérrez-Montes, C., Sanmiguel-Rojas, E., Viedma A., Rein G. 2009. Experimental data and numerical modelling of 1.3 and 2.3 MW fires in a 20 m cubic atrium. Build Environ, 44: 1827–1839.

    Article  Google Scholar 

  • Gutiérrez-Montes, C., Sanmiguel-Rojas, E., Viedma, A. 2010. Influence of different make-up air configurations on the fire-induced conditions in an atrium. Build Environ, 45: 2458–2472.

    Article  Google Scholar 

  • Harris, S. J., Maricq, M. M. 2002. The role of fragmentation in defining the signature size distribution of diesel soot. J Aerosol Sci, 33: 935–942.

    Article  Google Scholar 

  • Hasemi, Y. 1977. Numerical calculation of the natural convection in fire compartment. Building Research Institute, Ministry of Construction, Japan. Available at https://www.kenken.go.jp/english/contents/publications/paper/069.html.

  • Hassan, M. A. 1996. A theoretical simulation of fire extinction by water spray in a computer cabinet. Appl Math Model, 20: 804–813.

    Article  MATH  Google Scholar 

  • Haynes, B. S., Wagner, H. G. 1981. Soot formation. Prog Energy Combust Sci, 7: 229–273.

    Article  Google Scholar 

  • Hoffmann, N., Markatos, N. C. 1988. Thermal radiation effects on fires in enclosures. Appl Math Model, 12: 129–140.

    Article  Google Scholar 

  • Hu, Z., Utiskul, Y., Quintiere, J. G., Trouve, A. 2007. Towards large eddy simulations of flame extinction and carbon monoxide emission in compartment fires. Proc Combust Inst, 31: 2537–2545.

    Article  Google Scholar 

  • Hua, J., Kumar, K., Khoo, B. C., Xue, H. 2002. A numerical study of the interaction of water spray with a fire plume. Fire Saf J, 37: 631–657.

    Article  Google Scholar 

  • Imbert, B., Lafosse, F., Catoire, L., Paillard, C. É., Khasainov, B. 2008. Formulation reproducing the ignition delays simulated by a detailed mechanism: Application to n-heptane combustion. Combust Flame, 155: 380–408.

    Article  Google Scholar 

  • Ira, J., Hasalová, L., Šálek, V., Jahoda, M., Vystrčil, V. 2020. Thermal analysis and cone calorimeter study of engineered wood with an emphasis on fire modelling. Fire Technol, 56: 1099–1132.

    Article  Google Scholar 

  • ISO. 2015. ISO 5660–1:2015, Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 1: Heat release rate cone calorimeter method and smoke production rate dynamic measurement. Geneva, Switzerland: International Organization for Standardization (ISO). Available at https://www.iso.org/standard/57957.html.

    Google Scholar 

  • Janicka, J., Kollmann, W. 1980. A prediction model for turbulent diffusion flames including NO-formation. In: Combustor Medlling. Paris, France: Advisory Group for Aerospace Research and Development (AGARD).

    Google Scholar 

  • Jia, F., Galea, E. R., Patel, M. K. 1999. The numerical simulation of the noncharring pyrolysis process and fire development within a compartment. Appl Math Model, 23: 587–607.

    Article  MATH  Google Scholar 

  • Jones, W. P., McGuirk, J. J. 1980. Computation of a round turbulent jet discharging into a confined cross-flow. Turbul Shear flows, 2: 233.

    MATH  Google Scholar 

  • Jujuly, M. M., Rahman, A., Ahmed, S., Khan, F. 2015. LNG pool fire simulation for domino effect analysis. Reliab Eng Syst Saf, 143: 19–29.

    Article  Google Scholar 

  • Kang, Y., Wen, J. X. 2004. Large eddy simulation of a small pool fire. Combust Sci Technol, 176: 2193–2223.

    Article  Google Scholar 

  • Karagiannidis, S., Mantzaras, J. 2010. Numerical investigation on the start-up of methane-fueled catalytic microreactors. Combust Flame, 157: 1400–1413.

    Article  MATH  Google Scholar 

  • Kashiwagi, T. 1994. Polymer combustion and flammability—Role of the condensed phase. Symp Int Combust, 25: 1423–1437.

    Article  Google Scholar 

  • Kee, R. J., Rupley, F. M., Miller, J. A., Coltrin, M. E., Grcar, J. F., Meeks, E., Moffat, H. K., Lutz, A. E., Dixon-Lewis, G., Smooke, M. D., et al. 2000. CHEMKIN Collection, Release 3.6. Reaction Design, Inc., San Diego, CA, US. Available at https://www3.nd.edu/∼powers/ame.60636/chemkin2000.pdf.

    Google Scholar 

  • Kempel, F., Schartel, B., Marti, J. M., Butler, K. M., Rossi, R., Idelsohn, S. R., Oñate, E., Hofmann, A. 2015. Modelling the vertical UL 94 test: Competition and collaboration between melt dripping, gasification and combustion. Fire Mater, 39: 570–584.

    Article  Google Scholar 

  • Kent, J. H., Bilger, R. W. 1977. The prediction of turbulent diffusion flame fields and nitric oxide formation. Symp Int Combust, 16: 1643–1656.

    Article  Google Scholar 

  • Keramida, E. P., Karayannis, A. N., Boudouvis, A. G., Markatos, N. C. 2000. Numerical modeling of radiant heat attenuation through water mist. Combust Sci Technol, 159: 351–371.

    Article  Google Scholar 

  • Khalil, E. E. K. H. 1977. Flow and combustion in axisymmetric furnaces. Ph.D. Thesis. London University, UK.

    Google Scholar 

  • Khan, I. M., Greeves, G., Probert, D. M. 1971. Prediction of soot and nitric oxide concentrations in diesel engine exhaust. Air Pollut Control Transp Engines C, 142: 205–217.

    Google Scholar 

  • Khan, M. M., Tewarson, A., Chaos, M. 2016. Combustion characteristics of materials and generation of fire products. In: SFPE Handbook of Fire Protection Engineering. Hurley, M. J., et al. Eds. New York, NY, USA: Springer, 1143–1232.

    Chapter  Google Scholar 

  • Kim, S. C., Ryou, H. S. 2003. An experimental and numerical study on fire suppression using a water mist in an enclosure. Build Environ, 38: 1309–1316.

    Article  Google Scholar 

  • Kissinger, H. E. 1957. Reaction kinetics in differential thermal analysis. Anal Chem, 29: 1702–1706.

    Article  Google Scholar 

  • Ku, A. C., Doria, M. L., Lloyd, J. R. 1977. Numerical modeling of unsteady bouyant flows generated by fire in a corridor. Symp Int Combust, 16: 1373–1384.

    Article  Google Scholar 

  • Kuo, K. K. 1986. Principles of Combustion. New York, NY, USA: John Wiley & Sons.

    Google Scholar 

  • Launder, B. E., Spalding, D. B. 1972. Lectures in Mathematical Models of Turbulence. New York, NY, USA: Academic Press.

    MATH  Google Scholar 

  • Launder, B. E., Spalding, D. B. 1974. The numerical computation of turbulent flows. Comput Methods Appl Mech Eng, 3: 269–289.

    Article  MATH  Google Scholar 

  • Lautenberger, C. 2007. A generalized pyrolysis model for combustible solids. Ph.D. Thesis. University of California, Berkeley, USA.

    Google Scholar 

  • Lautenberger, C., Fernandez-Pello, C. 2009. Generalized pyrolysis model for combustible solids. Fire Saf J, 44: 819–839.

    Article  Google Scholar 

  • Leung, K. M., Lindstedt, R. P., Jones, W. P. 1991. A simplified reaction mechanism for soot formation in nonpremixed flames. Combust Flame, 87: 289–305.

    Article  Google Scholar 

  • Lewis, M., Moss, J., Rubini, P. 1997. CFD modelling of combustion and heat transfer in compartment fires. Fire Saf Sci, 5: 463–474.

    Article  Google Scholar 

  • Li, A., Yuen, A. C. Y., Wang, W., De Cachinho Cordeiro, I. M., Wang, C., Chen, T. B. Y., Zhang, J., Chan, Q. N., Yeoh, G. H. 2021. A Review on lithium-ion battery separators towards enhanced safety performances and modelling approaches. Molecules, 26: 478.

    Article  Google Scholar 

  • Li, S. C., Williams, F. A. 2002. Reaction mechanisms for methane ignition. J Eng Gas Turbines Power, 124: 471–480.

    Article  Google Scholar 

  • Lilly, D. K. 1992. A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A-Fluid, 4: 633–635.

    Article  Google Scholar 

  • Lin, B., Yuen, A. C. Y., Chen, T. B. Y., Yu, B., Yang, W., Zhang, J., Yao, Y., Wu, S., Wang, C., Yeoh, G. H. 2021. Experimental and numerical perspective on the fire performance of MXene/Chitosan/Phytic acid coated flexible polyurethane foam. Sci Rep, 11: 4684.

    Article  Google Scholar 

  • Liu, X., Chen, Y., Huang, Q., He, W., Feng, Q., Yu, B. 2014. A novel thermo-sensitive hydrogel based on thiolated chitosan/hydroxyapatite/beta-glycerophosphate. Carbohydr Polym, 110: 62–69.

    Article  Google Scholar 

  • Liu, H., Wang, C., de Cachinho Cordeiro, I. M., Yuen, A. C. Y., Chen, Q., Chan, Q., Kook, S., Yeoh, G. H. 2020. Critical assessment on operating water droplet sizes for fire sprinkler and water mist systems. J Build Eng, 28: 100999.

    Article  Google Scholar 

  • Liu, H., Yuen, A. C. Y., de Cachinho Cordeiro, I. M., Han, Y., Chen, T. B. Y., Chan, Q., Kook, S., Yeoh, G. H. 2021. A novel stochastic approach to study water droplet/flame interaction of water mist systems. Numer Heat Tr A-Appl, 79: 570–593.

    Article  Google Scholar 

  • Lockwood, F. C., Naguib, A. S. 1975. The prediction of the fluctuations in the properties of free, round-jet, turbulent, diffusion flames. Combust Flame, 24: 109–124.

    Article  Google Scholar 

  • Lockwood, F. C., Shah, N. G. 1981. A new radiation solution method for incorporation in general combustion prediction procedures. Symp Int Combust, 18: 1405–1414.

    Article  Google Scholar 

  • Luo, M., Beck, V. 1996. A study of non-flashover and flashover fires in a full-scale multi-room building. Fire Saf J, 26: 191–219.

    Article  Google Scholar 

  • Magnussen, B. F., Hjertager, B. H. 1977. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp Int Combust, 16: 719–729.

    Article  Google Scholar 

  • Manring, L. E. 1988. Thermal degradation of saturated polymethyl methacrylate. Macromolecules, 21: 528–530.

    Article  Google Scholar 

  • Marchisio, D. L., Fox, R. O. 2005. Solution of population balance equations using the direct quadrature method of moments. J Aerosol Sci, 36: 43–73.

    Article  Google Scholar 

  • Markatos, N. C., Malin, M. R., Cox, G. 1982. Mathematical modelling of buoyancy-induced smoke flow in enclosures. Int J Heat Mass Transf, 25: 63–75.

    Article  MATH  Google Scholar 

  • MCA. 2015. SOLAS Chapter II-2, Construction-fire protection, fire detection and fire extinction. UK: Maritime and Coastguard Agency (MCA). Available at https://www.gov.uk/government/publications/solas-chapter-ii-2.

    Google Scholar 

  • McCaffrey, B. J. 1979. Purely buoyant diffusion flames: Some experimental results. National Bureau of Standards, Washington DC, USA. Available at https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir79–1910.pdf.

    Book  Google Scholar 

  • McGrattan, K. B., Rehm, R. G., Baum, H. R. 1994. Fire-driven flows in enclosures. J Comput Phys, 110: 285–291.

    Article  MATH  Google Scholar 

  • McGrattan, K. B., Baum, H. R., Rehm, R. G. 1996. Numerical simulation of smoke plumes from large oil fires. Atmos Environ, 30: 4125–4136.

    Article  Google Scholar 

  • McGrattan, K. B., Baum, H. R., Rehm, R. G. 1998. Large eddy simulations of smoke movement. Fire Saf J, 30: 161–178.

    Article  Google Scholar 

  • McGrattan, K. B., Baum, H. R., Rehm, R. G., Hamins, A., Forney, G. P., Floyd, J. E., Hostikka, S., Prasad, K. 2000. Fire dynamics simulator—Technical reference guide. National Institute of Standards, Washington DC, USA. Available at https://github.com/firemodels/fds/releases/download/FDS6.7.6/FDS_Technical_Reference_Guide.pdf.

    Book  Google Scholar 

  • Mell, W., Charney, J., Jenkins, M. A., Cheney, P., Gould, J. 2013. Numerical simulations of grassland fire behavior from the LANL-FIRETEC and NIST-WFDS models. In: Remote Sensing and Modeling Applications to Wildland Fires. Qu, J. J., Sommers, W. T., Yang, R., et al. Eds. Berlin, Heidelberg, Germany: Springer, 209–225.

    Google Scholar 

  • Moghtaderi, B. 2006. The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels. Fire Mater, 30: 1–34.

    Article  Google Scholar 

  • Moinuddin, K., Razzaque, Q. S., Thomas, A. 2020. Numerical simulation of coupled pyrolysis and combustion reactions with directly measured fire properties. Polymers, 12: 2075.

    Article  Google Scholar 

  • Montazeri, H., Blocken, B., Hensen, J. L. M. 2015. Evaporative cooling by water spray systems: CFD simulation, experimental validation and sensitivity analysis. Build Environ, 83: 129–141.

    Article  Google Scholar 

  • Morrisset, D., Hadden, R. M., Bartlett, A. I., Law, A., Emberley, R. 2021. Time dependent contribution of char oxidation and flame heat feedback on the mass loss rate of timber. Fire Saf J, 120: 103058.

    Article  Google Scholar 

  • Moss, J. B., Stewart, C. D., Syed, K. J. 1989. Flowfield modelling of soot formation at elevated pressure. Symp Int Combust, 22: 413–423.

    Article  Google Scholar 

  • Most, J. M., Harivel, N., Joulain, P., Ruttun, B., Sztal, B. 1982. Influence of a turbulent diffusion flame on transport phenomena to a reacting surface. Symp Int Combust, 19: 375–386.

    Article  Google Scholar 

  • Nam, S. 1996. Development of a computational model simulating the interaction between a fire plume and a sprinkler spray. Fire Saf J, 26: 1–33.

    Article  Google Scholar 

  • Nam, S. 1999. Numerical simulation of the penetration capability of sprinkler sprays. Fire Saf J, 32: 307–329.

    Article  Google Scholar 

  • Nguyen, H. T., Nguyen, K. T. Q., Le, T. C., Zhang, G. 2021. Review on the use of artificial intelligence to predict fire performance of construction materials and their flame retardancy. Molecules, 26: 1022.

    Article  Google Scholar 

  • Ni, X., Zheng, Z. 2020. Extinguishment of sodium fires with Graphite@Stearate core-shell structured particles. Fire Saf J, 111: 102933.

    Article  Google Scholar 

  • Nicoud, F., Ducros, F. 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbul Combust, 62: 183–200.

    Article  MATH  Google Scholar 

  • Novozhilov, V. 2001. Computational fluid dynamics modeling of compartment fires. Prog Energy Combust Sci, 27: 611–666.

    Article  Google Scholar 

  • Novozhilov, V. 2007. Fire suppression studies. Therm Sci, 11: 161–180.

    Article  Google Scholar 

  • Ozisik, M. N. 1973. Radiative Transfer and Interactions with Conduction and Convection. New York, USA: John Wiley & Sons.

    Google Scholar 

  • Pan, R., Duque, J. V. F., Debenest, G. 2021. Investigating waste plastic pyrolysis kinetic parameters by genetic algorithm coupled with thermogravimetric analysis. Waste Biomass Valorization, 12: 2623–2637.

    Article  Google Scholar 

  • Peeters, J., Mahnen, G. 1973. Reaction mechanisms and rate constants ofelementary steps in methane-oxygen flames. Symp Int Combust, 14: 133–146.

    Article  Google Scholar 

  • Peng, T., Liu, B., Gao, X., Luo, L., Sun, H. 2018. Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite. Appl Surf Sci, 444: 800–810.

    Article  Google Scholar 

  • Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog Energy Combust Sci, 10: 319–339.

    Article  Google Scholar 

  • Protocol, M. 1987. Montreal protocol on substances that deplete the ozone layer. US Government Printing Office, Washington, DC. Available at https://treaties.un.org/doc/Treaties/1989/01/19890101%2003–25%20AM/Ch_XXVII_02_ap.pdf.

  • Rein, G., Lautenberger, C., Fernandez-Pello, A. C., Torero, J. L., Urban, D. L. 2006. Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combust Flame, 146: 95–108.

    Article  Google Scholar 

  • Rein, G. 2016. Smoldering combustion. In: SFPE Handbook of Fire Protection Engineering. Hurley, M. J., et al. Eds. New York, NY, USA: Springer, 581–603.

    Chapter  Google Scholar 

  • Ren, N., Wang, Y., Vilfayeau, S., Truvé, A. 2013. Large eddy simulation of turbulent wall fires. In: Proceedings ot the 8th US National Combustion Meeting, Salt Lake City, UT, USA.

  • Rhodes, R. P., Harsha, P. T., Peters, C. E. 1974. Turbulent kinetic energy analyses of hydrogen-air diffusion flames. Acta Astronaut, 1: 443–470.

    Article  Google Scholar 

  • Rodi, W. 1985. Calculation of stably stratified shear layer flows with a buoyancy-extended k−ε episolon turbulence model. Turbul Diffus Stable Environ, 1985: 111–140.

    Google Scholar 

  • Romagnosi, L., Gascoin, N., El-Tabach, E., Fedioun, I., Bouchez, M., Steelant, J. 2013. Pyrolysis in porous media: Part 1. Numerical model and parametric study. Energy Convers Manag, 68: 63–73.

    Article  Google Scholar 

  • Ryder, N. L., Schemel, C. F., Jankiewicz, S. P. 2006. Near and far field contamination modeling in a large scale enclosure: Fire Dynamics Simulator comparisons with measured observations. J Hazard Mater, 130: 182–186.

    Article  Google Scholar 

  • Saddawi, A., Jones, J. M., Williams, A., Wójtowicz, M. A. 2010. Kinetics of the thermal decomposition of biomass. Energy Fuels, 24: 1274–1282.

    Article  Google Scholar 

  • Safarzadeh, M., Heidarinejad, G., Pasdarshahri, H. 2021. Evaluation of LES sub-grid scale models and time discretization schemes for prediction of convection effect in a buoyant pool fire. Heat Mass Transf, 57: 631–646.

    Article  Google Scholar 

  • Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., Criado, J. M. 2013. Limitations of model-fitting methods for kinetic analysis: Polystyrene thermal degradation. Resour Conserv Recycl, 74: 75–81.

    Article  Google Scholar 

  • Schuster, A. 1905. Radiation through a foggy atmosphere. Astrophys J Lett, 21: 1.

    Article  Google Scholar 

  • Schwarzschild, K. 1906. On the equilibrium of the sun’s atmosphere. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Math.-phys. Klasse, 195: 41–53.

    Google Scholar 

  • Shen, T. S., Huang, Y. H., Chien, S. 2008. Using fire dynamic simulation FDS to reconstruct an arson fire scene. Build Environ, 43: 1036–1045.

    Article  Google Scholar 

  • Sikanen, T., Vaari, J., Hostikka, S., Paajanen, A. 2014. Modeling and simulation of high pressure water mist systems. Fire Technol, 50: 483–504.

    Article  Google Scholar 

  • Simcox, S., Wilkes, N. S., Jones, I. P. 1992. Computer simulation of the flows of hot gases from the fire at King’s Cross Underground station. Fire Saf J, 18: 49–73.

    Article  Google Scholar 

  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations. Mon Weather Rev, 91: 99–164.

    Article  Google Scholar 

  • Snegirev, A. Y., Talalov, V. A., Stepanov, V. V., Harris, J. N. 2013. A new model to predict pyrolysis, ignition and burning of flammable materials in fire tests. Fire Saf J, 59: 132–150.

    Article  Google Scholar 

  • Sodja, J. 2007. Turbulence models in CFD. University of Ljubljana. Available at http://www-f1.ijs.si/∼rudi/sola/Turbulence-modelsin-CFD.pdf.

  • Spalding, D. B. 1971. Mixing and chemical reaction in steady confined turbulent flames. Symp Int Combust, 13: 649–657.

    Article  Google Scholar 

  • Stamm, A. J. 1956. Thermal degradation of wood and cellulose. Ind Eng Chem, 48: 413–417.

    Article  Google Scholar 

  • Stavrakakis, G. M., Markatos, N. C. 2009. Simulation of airflow in one- and two-room enclosures containing a fire source. Int J Heat Mass Transf, 52: 2690–2703.

    Article  MATH  Google Scholar 

  • Steckler, K. D., Quintiere, J. G., Rinkinen, W. J. 1982. Flow induced by fire in a compartment. National Bureau of Standards, Washington, DC, USA.

    Google Scholar 

  • Stoliarov, S., Lyon, R. 2008. Thermo-kinetic model of burning for pyrolyzing materials. Fire Saf Sci, 9: 1141–1152.

    Article  Google Scholar 

  • Stoliarov, S. I., Crowley, S., Walters, R. N., Lyon, R. E. 2010. Prediction of the burning rates of charring polymers. Combust Flame, 157: 2024–2034.

    Article  Google Scholar 

  • Sureshkumar, R., Kale, S. R., Dhar, P. L. 2008. Heat and mass transfer processes between a water spray and ambient air-II. Simulations. Appl Therm Eng, 28: 361–371.

    Article  Google Scholar 

  • Swann, J. D., Stoliarov, S. I. 2021. Determination of pyrolysis and combustion properties of polyvinylidene fluoride using comprehensive modeling: Relating heat transfer to the intumescent char’s porous structure. Fire Saf J, 120: 103086.

    Article  Google Scholar 

  • Syed, K. J., Stewart, C. D., Moss, J. B. 1991. Modelling soot formation and thermal radiation in buoyant turbulent diffusion flames. Symp Int Combust, 23: 1533–1541.

    Article  Google Scholar 

  • Tamanini, F. 1979. A numerical model for the prediction of radiationcontrolled turbulent wall fires. Symp Int Combust, 17: 1075–1085.

    Article  Google Scholar 

  • Tesner, P. A., Smegiriova, T. D., Knorre, V. G. 1971. Kinetics of dispersed carbon formation. Combust Flame, 17: 253–260.

    Article  Google Scholar 

  • Thoo, W. J., Kevric, A., Ng, H. K., Gan, S., Shayler, P., La Rocca, A. 2014. Characterisation of ignition delay period for a compression ignition engine operating on blended mixtures of diesel and gasoline. Appl Therm Eng, 66: 55–64.

    Article  Google Scholar 

  • Tieszen, S. R., Nicolette, V. F., Gritzo, L. A., Moya, J. L., Holen, J. K., Murray, D. 1996. Vortical structures in pool fires: Observation, speculation, and simulation. Office of Scientific and Technical Information (OSTI), USA.

    Book  Google Scholar 

  • Trouvé, A., Wang, Y. 2010. Large eddy simulation of compartment fires. Int J Comput Fluid Dyn, 24: 449–466.

    Article  MATH  Google Scholar 

  • Upadhyay, R. R., Ezekoye, O. A. 2008. Treatment of design fire uncertainty using Quadrature Method of Moments. Fire Saf J, 43: 127–139.

    Article  Google Scholar 

  • USDOE. 1994. Primer on spontaneous heating and pyrophoricity. Technical Report. United States Department of Energy (USDOE), Washington DC, USA. Available at https://www.osti.gov/servlets/purl/10196002.

    Google Scholar 

  • Vaari, J., Paajanen, A. 2018. Evaluation of the reactive molecular dynamics method for research on flame retardants: ATH-filled polyethylene. Comput Mater Sci, 153: 103–112.

    Article  Google Scholar 

  • Van Duin, A. C. T., Dasgupta, S., Lorant, F., Goddard, W. A. 2001. ReaxFF: A reactive force field for hydrocarbons. J Phys Chem A, 105: 9396–9409.

    Article  Google Scholar 

  • Van Maele, K., Merci, B. 2006. Application of two buoyancy-modified k−ε turbulence models to different types of buoyant plumes. Fire Saf J, 41: 122–138.

    Article  Google Scholar 

  • Vauquelin, O., Wu, Y. 2006. Influence of tunnel width on longitudinal smoke control. Fire Saf J, 41: 420–426.

    Article  Google Scholar 

  • Venkatesh, S., Ito, A., Saito, K., Wichman, I. S. 1996. Flame base structure of small-scale pool fires. Proc Combust Inst, 26: 1437–1443.

    Article  Google Scholar 

  • Vilfayeau, S., Myers, T., Marshall, A. W., Trouvé, A. 2017. Large eddy simulation of suppression of turbulent line fires by base-injected water mist. Proc Combust Inst, 36: 3287–3295.

    Article  Google Scholar 

  • Vreman, A. W. 2004. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys Fluids, 16: 3670–3681.

    Article  MATH  Google Scholar 

  • Walton, W. D., Thomas, P. H. 1995. Estimating temperatures in compartment fires. In: SFPE Handbook of Fire Protection Engineering. Hurley, M. J., et al. Eds. New York, NY, USA: Springer, 996–1023.

    Google Scholar 

  • Wang, H. Y., Joulain, P., Most, J. M. 1995. Three-dimensional modeling and parametric study of turbulent burning along the walls of a vertical rectangular channel. Combust Sci Technol, 109: 287–308.

    Article  Google Scholar 

  • Wang, H. 2009. Numerical study of under-ventilated fire in mediumscale enclosure. Build Environ, 44: 1215–1227.

    Article  Google Scholar 

  • Wang, Y., Chatterjee, P., de Ris, J. L. 2011. Large eddy simulation of fire plumes. Proc Combust Inst, 33: 2473–2480.

    Article  Google Scholar 

  • Wang, C. J., Wen, J. X., Chen, Z. B., Dembele, S. 2014. Predicting radiative characteristics of hydrogen and hydrogen/methane jet fires using FireFOAM. Int J Hydrog Energy, 39: 20560–20569.

    Article  Google Scholar 

  • Wang, X., Fleischmann, C., Spearpoint, M., Li, K. 2017. A simple hand calculation method to estimate the pyrolysis kinetics of plastic and wood materials. In: Fire Science and Technology 2015. Harada K., et al. Eds. Singapore: Springer, 455–462.

    Chapter  Google Scholar 

  • Wang, C., Yuen, A. C. Y., Chan, Q., Chen, T. B. Y., Chen, Q., Cao, R., Yip, H. L., Kook, S., Yeoh, G. H. 2019a. Influence of eddy-generation mechanism on the characteristic of on-source fire whirl. Appl Sci, 9: 3989.

    Article  Google Scholar 

  • Wang, C., Yuen, A. C. Y., Chan, Q. N., Chen, T. B. Y., Yang, W., Cheung, S. C. P., Yeoh, G. H. 2019b. Sensitivity analysis of key parameters for population balance based soot model for low-speed diffusion flames. Energies, 12: 910.

    Article  Google Scholar 

  • Wang, C., Yuen, A. C. Y., Chan, Q. N., Chen, T. B. Y., Yang, W., Cheung, S. C. P., Yeoh, G. H. 2020. Characterisation of soot particle size distribution through population balance approach and soot diagnostic techniques for a buoyant non-premixed flame. J Energy Inst, 93: 112–128.

    Article  Google Scholar 

  • Wen, J. X., Kang, K., Donchev, T., Karwatzki, J. M. 2007. Validation of FDS for the prediction of medium-scale pool fires. Fire Saf J, 42: 127–138.

    Article  Google Scholar 

  • Wen, J. X., Huang, L. Y., Roberts, J. 2001. The effect of microscopic and global radiative heat exchange on the field predictions of compartment fires. Fire Saf J, 36: 205–223.

    Article  Google Scholar 

  • Westbrook, C. K., Dryer, F. L. 1981. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust Sci Technol, 27: 31–43.

    Article  Google Scholar 

  • Wolf, D., Moros, R. 1997. Estimating rate constants of heterogeneous catalytic reactions without supposition of rate determining surface steps—An application of a genetic algorithm. Chem Eng Sci, 52: 1189–1199.

    Article  Google Scholar 

  • Xin, Y., Gore, J. P., Mcgrattan, K. B., Rehm, R. G., Baum, H. R. 2002. Large eddy simulation of buoyant turbulent pool fires. Proc Combust Inst, 29: 259–266.

    Article  Google Scholar 

  • Xin, Y., Gore, J. P., McGrattan, K. B., Rehm, R. G., Baum, H. R. 2005. Fire dynamics simulation of a turbulent buoyant flame using a mixture-fraction-based combustion model. Combust Flame, 141: 329–335.

    Article  Google Scholar 

  • Xue, H., Ho, J. C., Cheng, Y. M. 2001. Comparison of different combustion models in enclosure fire simulation. Fire Saf J, 36: 37–54.

    Article  Google Scholar 

  • Yang, K. T., Chang, L. C. 1977. Undsafe-I: A computer code for buoyant flow in an enclosure. Technical Report N 77, NASA STI/Recon, USA.

    Google Scholar 

  • Yang, K. T. 1994. Recent development in field modelling of compartment fires. JSME Int J B, 37: 702–717.

    Article  Google Scholar 

  • Yang, D., Hu, L. H., Jiang, Y. Q., Huo, R., Zhu, S., Zhao, X. Y. 2010a. Comparison of FDS predictions by different combustion models with measured data for enclosure fires. Fire Saf J, 45: 298–313.

    Article  Google Scholar 

  • Yang, P., Liu, T., Qin, X. 2010b. Experimental and numerical study on water mist suppression system on room fire. Build Environ, 45: 2309–2316.

    Article  Google Scholar 

  • Yeoh, G. H., Yuen, R. K. K., Chueng, S. C. P., Kwok, W. K. 2003. On modelling combustion, radiation and soot processes in compartment fires. Build Environ, 38: 771–785.

    Article  Google Scholar 

  • Yeoh, G. H., Tu, J. 2009. Computational Techniques for Multiphase Flows. Oxford, UK: Butterworth-Heinemann, Elsevier.

    Google Scholar 

  • Yuen, R. K. K., Yeoh, G. H., de Vahl Davis, G., Leonardi, E. 2007a. Modelling the pyrolysis of wet wood-I. Three-dimensional formulation and analysis. Int J Heat Mass Transf, 50: 4371–4386.

    Article  MATH  Google Scholar 

  • Yuen, R. K. K., Yeoh, G. H., de Vahl Davis, G., Leonardi, E. 2007b. Modelling the pyrolysis of wet wood-II. Three-dimensional cone calorimeter simulation. Int J Heat Mass Transf, 50: 4387–4399.

    Article  MATH  Google Scholar 

  • Yuen, A. C. Y., Yeoh, G. H., Alexander, B., Cook, M. 2014a. Fire scene investigation of an arson fire incident using computational fluid dynamics based fire simulation. Build Simul, 7: 477–487.

    Article  Google Scholar 

  • Yuen, A. C. Y., Yeoh, G. H., Alexander, B., Cook, M. 2014b. Fire scene reconstruction of a furnished compartment room in a house fire. Case Stud Fire Saf, 1: 29–35.

    Article  Google Scholar 

  • Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Barber, T. J. 2016. Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment. Int J Heat Mass Transf, 96: 171–188.

    Article  Google Scholar 

  • Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Chen, T. B. Y., Chan, Q. N., Wang, C., Li, D. D. 2017. Comparison of detailed soot formation models for sooty and non-sooty flames in an under-ventilated ISO room. Int J Heat Mass Transf, 115: 717–729.

    Article  Google Scholar 

  • Yuen, A. C. Y., Yeoh, G. H., Cheung, S. C. P., Chan, Q. N., Chen, T. B. Y., Yang, W., Lu, H. 2018a. Numerical study of the development and angular speed of a small-scale fire whirl. J Comput Sci, 27: 21–34.

    Article  Google Scholar 

  • Yuen, A. C. Y., Chen, T. B. Y., Yeoh, G. H., Yang, W., Cheung, S. C. P., Cook, M., Yu, B., Chan, Q., Yip, H. L. 2018b. Establishing pyrolysis kinetics for the modelling of the flammability and burning characteristics of solid combustible materials. J Fire Sci, 36: 494–517.

    Article  Google Scholar 

  • Yuen, A. C. Y., Yang, W., Yeoh, G. H. 2020a. Numerical study of surface regression of a flame retarded expandable polystrene. In: Lecture Notes in Civil Engineering. Wang, C., Ho, J., Kitipornchai, S. Eds. Singapore: Springer, 149–158.

    Google Scholar 

  • Yuen, A. C. Y., Chen, T. B. Y., Wang, C., Wei, W., Kabir, I., Vargas, J. B., Chan, Q. N., Kook, S., Yeoh, G. H. 2020b. Utilising genetic algorithm to optimise pyrolysis kinetics for fire modelling and characterisation of chitosan/graphene oxide polyurethane composites. Compos Part B-Eng, 182: 107619.

    Article  Google Scholar 

  • Yuen, A. C. Y., Yang, W., Yeoh, G. H. 2020c. Numerical study of surface regression of a flame retarded expandable polystrene. In: ACMSM25. Wang, C., Ho, J., Kitipornchai, S. Eds. Singapore: Springer, 149–158.

  • Yuen, A. C. Y., Chen, T. B. Y., Li, A., De Cachinho Cordeiro, I. M., Liu, L. Liu, H., Lo, A. L. P., Chan, Q. N., Yeoh, G. H. 2021. Evaluating the fire risk associated with cladding panels: An overview of fire incidents, policies, and future perspective in fire standards. Fire Mater, https://doi.org/10.1002/fam.2973.

  • Zhang, X. L., Vantelon, J. P., Joulain, P. 1993. Thermal radiation from a small-scale pool fire: Influence of externally applied radiation. Combust Flame, 92: 71–84.

    Article  Google Scholar 

  • Zhou, X. 2015. Characterization of interactions between hot air plumes and water sprays for sprinkler protection. Proc Combust Inst, 35: 2723–2729.

    Article  Google Scholar 

Download references

Acknowledgements

All financial sponsorship and supports are deeply appreciated by the authors. This research funding was provided by the Australian Research Council (ARC Industrial Transformation Training Centre IC170100032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Chun Yin Yuen.

Additional information

Declaration of competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuen, A.C.Y., De Cachinho Cordeiro, I.M., Chen, T.B.Y. et al. Multiphase CFD modelling for enclosure fires—A review on past studies and future perspectives. Exp. Comput. Multiph. Flow 4, 1–25 (2022). https://doi.org/10.1007/s42757-021-0116-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-021-0116-4

Keywords

Navigation