Skip to main content

Advertisement

Log in

Impact of Source and Method of Potassium Application on Dry Matter Accumulation and Partitioning of Potassium in Rice (Oryza sativa L.)

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

The experiment was carried out to assess dry matter accumulation and potassium partitioning in submerged rice upon application of three organic potassium salts, viz., potassium citrate (KC), potassium gluconate (KG), and potassium humate (KH), and inorganic salt, potassium sulfate (KS). Treatments included recommended dose of potassium (RDF-K, 60 kg ha−1) via foliar or soil application of KS, alone or in combination with foliar application of three organic potassium salts (KC, KG, and KH), in three split doses at three rice phenological stages, viz., tillering, panicle initiation, and early flowering. Solely foliar application of organic K salts resulted in 76% K uptake in rice straw compared with 13% K uptake in grain, which diminished internal use efficiency (IUE) and partial factor productivity (PFP) of K. Conjoint application of KS (half of RDF-K as soil application) and KH (half of RDF-K as foliar spraying) obtained highest grain K accumulation and significantly enhanced IUE and PFP of K. KH performed best among the different K salts used and significantly enhanced root dry matter which resulted in significantly highest grain N and P uptake. This study confirmed that organic salts of K altered dry matter and K partitioning, and soil application of KS (half of RDF-K) in combination with foliar application of KH (half of RDF-K) at three growth stages elevated K utilization efficiency of submerged rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad Z, Anjum S, Waraich EA, Ayub MA, Ahmad T, Tariq RMS, Ahmad R, Iqbal MA (2018) Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress – a review. J Plant Nutr 41:1734–1743. https://doi.org/10.1080/01904167.2018.1459688

    Article  CAS  Google Scholar 

  • Akhter S, Kotru R, Lone BA, Jan R (2017) Effect of split application of potassium and nitrogen on wheat (Triticum aestivum) growth and yield under temperate Kashmir. Indian J Agron 62:49–53

    CAS  Google Scholar 

  • Ali A, Hussain M, Habib HS, Kiani TT, Anees MA, Rahman MA (2016) Foliar spray surpasses soil application of potassium for maize production under rainfed conditions. Turk J Field Crops 21:36–43. https://doi.org/10.17557/tjfc.66054

    Article  Google Scholar 

  • Allahveran A, Farokhzad A, Asghari M, Sarkhosh A (2018) Foliar application of ascorbic and citric acids enhanced ‘red spur’ apple fruit quality, bioactive compounds and antioxidant activity. Physiol Mol Biol Plants 24:433–440. https://doi.org/10.1007/s12298-018-0514-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiri ME, Fallahi E, Golchin A (2008) Influence of foliar and ground fertilization on yield, fruit quality, and soil, leaf, and fruit mineral nutrients in apple. J Plant Nutr 31:515–525. https://doi.org/10.1080/01904160801895035

    Article  CAS  Google Scholar 

  • Annadurai K, Palaniappan SP, Masilamani P, Kavimani R (2000) Split application of potassium on rice–A review. Agric Rev 21:36–44

    Google Scholar 

  • AOAC (2006) Official methods of analysis, 18th edn. Arlington: Association of Official Analytical Chemists

    Google Scholar 

  • Aulakh MS, Benbi DK (2008) Enhancing fertilizer use efficiency. In: Proceedings of FAI Annual Seminar, Fertilizer Association of India, New Delhi, pp 1–23

  • Bremner JM (1965) Total nitrogen. In: Black CA, Evans DD, Ensuinger LE, White JK, Clark FF (eds) Methods of soil analysis, part 2, agronomy 9. Madison: American Society of Agronomy, pp 1149–1178

    Google Scholar 

  • Brhane H, Mamo T, Teka K (2017) Potassium fertilization and its level on wheat (Triticum aestivum) yield in shallow depth soils of northern Ethiopia. J Fertil Pestic 8:182. https://doi.org/10.4172/2471-2728.1000182

    Article  Google Scholar 

  • Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, Mazzei P, Piccolo A (2015) Humic and fulvic acids as biostimulants in horticulture. Sci Hortic 196:15–27

    Article  CAS  Google Scholar 

  • Canellas LP, Canellas NOA, da S. Irineu LES, Olivares FL, Piccolo A (2020) Plant chemical priming by humic acids. Chem Biol Technol Agric 7:12. https://doi.org/10.1186/s40538-020-00178-4

  • Cassman KG, Peng S, Olk DC, Ladha JK, Reichardt W, Dobermann A, Singh U (1998) Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res 56:7–39

    Article  Google Scholar 

  • Dhillon JS, Eickhoff EM, Mullen RW, Raun WR (2019) World potassium use efficiency in cereal crops. Agron J 111:889–896. https://doi.org/10.2134/agronj2018.07.0462

    Article  CAS  Google Scholar 

  • Dubey AN, Raha P, Kundu A (2019) Response of soil applied lignite coal derived humic acid on yield and quality of spinach (Spinacia oleracea L.). Veg Sci 46:72–77

    Google Scholar 

  • Ebrahimi RF, Rahdari P, Vahed HS, Shahinrokhsar P, Babazadeh S (2012) Rice response to different methods of potassium application under salinity stress condition. Am-Eur J Agric Environ Sci 12:1441–1445

    CAS  Google Scholar 

  • Ge T, Yuan H, Zhu H, Wu X, Nie SA, Liu C, Tong C, Wu J, Brookes P (2012) Biological carbon assimilation and dynamics in a flooded rice–soil system. Soil Biol Biochem 48:39–46. https://doi.org/10.1016/j.soilbio.2012.01.009

    Article  CAS  Google Scholar 

  • Ghazijahani N, Hadavi E, Jeong BR (2014) Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.). Front Plant Sci 5:573. https://doi.org/10.3389/fpls.2014.00573

  • Gholami A, Akhlaghi S, Shahsavani S, Farrokhi N (2011) Effects of urea foliar application on grain yield and quality of winter wheat. Commun Soil Sci Plant Anal 42:719–727. https://doi.org/10.1080/00103624.2011.550377

    Article  CAS  Google Scholar 

  • Howladar SM (2018) Potassium humate improves physio-biochemical attributes, defense systems activities and water-use efficiencies of eggplant under partial root-zone drying. Sci Hortic 240:179–185. https://doi.org/10.1016/j.scienta.2018.06.020

    Article  CAS  Google Scholar 

  • Hu L, Zhang Z, Xiang Z, Yang Z (2016) Exogenous application of citric acid ameliorates the adverse effect of heat stress in tall fescue (Lolium arundinaceum). Front Plant Sci 7:179. https://doi.org/10.3389/fpls.2016.00179

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016). Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena V, Maurya B, Verma J, Meena R (eds) Potassium solubilizing microorganisms for sustainable agriculture. New Delhi: Springer, pp 21–29. https://doi.org/10.1007/978-81-322-2776-2_2

  • Kumar D, Singh AP (2017) Efficacy of potassium humate and chemical fertilizers on yield and nutrient availability patterns in soil at different growth stages of rice. Commun Soil Sci Plant Anal 48:245–261

    Article  CAS  Google Scholar 

  • Kundu A, Raha P, Dubey AN, Rani M, Paul A, Patel R (2021) Differential responses of rice (Oryza sativa L.) to foliar fertilization of organic potassium salts. J Plant Nutr 44:1330–1348. https://doi.org/10.1080/01904167.2020.1862193

    Article  CAS  Google Scholar 

  • Lancashire PD, Bleiholder H, Langeluddeke P, Strauss R, Van den Boom T, Weber E, Witzenberger A (1991) A uniform decimal code for growth stages of crops and weeds. Ann Appl Biol 119:561–601

    Article  Google Scholar 

  • Li M, Zhang H, Yang X, Ge M, Ma Q, Wei H, Dai Q, Huo Z, Xu K, Luo D (2014) Accumulation and utilization of nitrogen, phosphorus and potassium of irrigated rice cultivars with high productivities and high N use efficiencies. Field Crops Res 161:55–63. https://doi.org/10.1016/j.fcr.2014.02.007

    Article  Google Scholar 

  • Liang TB, Wang ZL, Wang RJ, Liu LL, Shi CY (2007) Effects of potassium humate on ginger root growth and its active oxygen metabolism. Ying Yong Sheng Tai Xue Bao 18:813–817

    CAS  PubMed  Google Scholar 

  • Majumdar K, Sanyal SK, Singh VK, Dutta SK, Satyanarayana T, Dwivedi BS (2017) Potassium fertiliser management in Indian agriculture: current trends and future needs. Ind J Fertil 13:20–30

    Google Scholar 

  • Makhdum MI, Pervez H, Ashraf M (2007) Dry matter accumulation and partitioning in cotton (Gossypium hirsutum L.) as influenced by potassium fertilization. Biol Fertil Soils 43:295–301. https://doi.org/10.1007/s00374-006-0105-6

    Article  CAS  Google Scholar 

  • Masuya Y, Kumagai E, Matsunami M, Shimono H (2021) Dry matter partitioning to leaves differentiates African and Asian rice genotypes exposed to elevated CO2. J Agron Crop Sci 207:120–127. https://doi.org/10.1111/jac.12445

    Article  CAS  Google Scholar 

  • Mikkelsen RL, Roberts TL (2021) Inputs: potassium sources for agricultural systems. In: Murrell TS, Mikkelsen RL, Sulewski G, Norton R, Thompson ML (eds) Improving Potassium Recommendations for Agricultural Crops. Cham: Springer. https://doi.org/10.1007/978-3-030-59197-7_2

  • Niu J, Liu C, Huang M, Liu K, Yan D (2021) Effects of foliar fertilization: a review of current status and future perspectives. J Soil Sci Plant Nutr 21:104–118. https://doi.org/10.1007/s42729-020-00346-3

    Article  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular/United States Department of Agriculture (no. 939)

  • Oosterhuis DM, Loka DA, Kawakami EM, Pettigrew WT (2014) The physiology of potassium in crop production. Adv Agron 126:203–233

    Article  Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena V, Maurya B, Verma J, Meena R (eds) Potassium solubilizing microorganisms for sustainable agriculture. New Delhi: Springer, pp 327–331. https://doi.org/10.1007/978-81-322-2776-2_23

  • Ravichandran M, Sriramachandrasekharan MV (2011) Optimizing timing of potassium application in productivity enhancement of crops. Karnataka J Agric Sci 24:75–80

    Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena V, Maurya B, Verma J, Meena R (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. New Delhi: Springer. https://doi.org/10.1007/978-81-322-2776-2_17

  • Rengel Z, Damon PM (2008) Crops and genotypes differ in efficiency of potassium uptake and use. Physiol Plant 133:624–636. https://doi.org/10.1111/j.1399-3054.2008.01079.x

    Article  CAS  PubMed  Google Scholar 

  • Romheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180. https://doi.org/10.1007/s11104-010-0520-1

    Article  CAS  Google Scholar 

  • Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016) Can potassium-solubilising bacteria mitigate the potassium problems in India?. In: Meena V, Maurya B, Verma J, Meena R (eds) Potassium solubilizing microorganisms for sustainable agriculture. New Delhi: Springer, pp 127–136. https://doi.org/10.1007/978-81-322-2776-2_9

  • Selladurai R, Purakayastha TJ (2016) Effect of humic acid multinutrient fertilizers on yield and nutrient use efficiency of potato. J Plant Nutr 39:949–956. https://doi.org/10.1080/01904167.2015.1109106

    Article  CAS  Google Scholar 

  • Singh VK, Dwivedi BS, Rathore SS, Mishra RP, Satyanarayana T, Majumdar K (2021) Timing potassium applications to synchronize with plant demand. In: Murrell TS, Mikkelsen RL, Sulewski G, Norton R, Thompson ML (eds) Improving Potassium Recommendations for Agricultural Crops. Cham: Springer. https://doi.org/10.1007/978-3-030-59197-7_13

  • Somaweera KA, Suriyagoda LD, Sirisena DN, De Costa WA (2016) Accumulation and partitioning of biomass, nitrogen, phosphorus and potassium among different tissues during the life cycle of rice grown under different water management regimes. Plant Soil 401:169–183. https://doi.org/10.1007/s11104-015-2541-2

    Article  CAS  Google Scholar 

  • Soppelsa S, Kelderer M, Casera C, Bassi M, Robatscher P, Matteazzi A, Andreotti C (2019) Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agron 9:483. https://doi.org/10.3390/agronomy9090483

    Article  CAS  Google Scholar 

  • Souri MK (2016) Aminochelate fertilizers: the new approach to the old problem; a review. Open Agric 1:118–123. https://doi.org/10.1515/opag-2016-0016

    Article  Google Scholar 

  • Srinivasarao C, Satyanarayana T (2012) Potassium mining in Indian agriculture. Indian J Fertil 8:22–29

    CAS  Google Scholar 

  • Stewart WM, Sawyer JE, Alley MM (2009) The four fertilizer rights: timing. Crops Soils 42:24–28

    Google Scholar 

  • Subbiah BV, Asija AL (1956) A rapid method for determination of available nitrogen is soil. Curr Sci 25:259–260

    CAS  Google Scholar 

  • Taha SS, Osman AS (2018) Influence of potassium humate on biochemical and agronomic attributes of bean plants grown on saline soil. J Hortic Sci Biotechnol 93:545–554. https://doi.org/10.1080/14620316.2017.1416960

    Article  CAS  Google Scholar 

  • Taha RA, Hassan HS, Shaaban EA (2014) Effect of different potassium fertilizer forms on yield, fruit quality and leaf mineral content of Zebda mango trees. Middle-East J Sci Res 21:123–129. https://doi.org/10.5829/idosi.mejsr.2014.21.03.21483

    Article  CAS  Google Scholar 

  • Tan KH (2003) Humic matter in soil and environment: Principles and controversies. New York: Marcel Dekker

    Book  Google Scholar 

  • Ullah A, Ali M, Shahzad K, Ahmad F, Iqbal S, Rahman MH, Ahmad S, Iqbal MM, Danish S, Fahad S, Alkahtani J (2020) Impact of seed dressing and soil application of potassium humate on cotton plants productivity and fiber quality. Plants 9:1444. https://doi.org/10.3390/plants9111444

    Article  CAS  PubMed Central  Google Scholar 

  • Vijayakumar S, Kumar D, Shivay Y, Anand A, Saravanane P, Singh N (2019) Potassium fertilization for enhancing yield attributes, yield and economics of wheat (Triticum aestivum). Indian J Agron 64:226–231

    CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and proposed modification of chromic titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wang ZZ, Zhang C, Shi CY, Liu HJ, Shi YX (2012) Effects of Ha-K fertilizer on potassium content of soil and absorption and utilization of potassium in sweet potato. Plant Nutr Fert Sci 18:249–255

    CAS  Google Scholar 

  • Wang JD, Hou P, Zhu GP, Dong Y, Hui Z, Ma H, Xu XJ, Nin Y, Ai Y, Zhang Y (2017) Potassium partitioning and redistribution as a function of K-use efficiency under K deficiency in sweet potato (Ipomoea batatas L.). Field Crops Res 211:147–154. https://doi.org/10.1016/j.fcr.2017.06.021

    Article  Google Scholar 

  • Wang S, Li H, Liu Q, Hu S, Shi Y (2020) Nitrogen uptake, growth and yield response of orange-fleshed sweet potato (Ipomoea Batatas L.) To Potassium Supply. Commun Soil Sci Plant Anal 51:175–185. https://doi.org/10.1080/00103624.2019.1695821

    Article  CAS  Google Scholar 

  • White PJ (2013) Improving potassium acquisition and utilisation by crop plants. J Plant Nutr Soil Sci 176:305–316. https://doi.org/10.1002/jpln.201200121

    Article  CAS  Google Scholar 

  • Yang XE, Liu JX, Wang WM, Ye ZQ, Luo AC (2004) Potassium internal use efficiency relative to growth vigor, potassium distribution, and carbohydrate allocation in rice genotypes. J Plant Nutr 27:837–852. https://doi.org/10.1081/PLN-120030674

    Article  CAS  Google Scholar 

  • Yang F, Du M, Tian X, Eneji AE, Li Z (2016) Cotton yield and potassium use efficiency as affected by potassium fertilizer management with stalks returned to field. Crop Sci 56:740–746. https://doi.org/10.2135/cropsci2015.03.0136

    Article  CAS  Google Scholar 

  • Zhang Z, Yu K, Jin X, Nan Z, Wang J, Niu X, Whish JP, Bell LW, Siddique KH (2019) Above and belowground dry matter partitioning of four warm-season annual crops sown on different dates in a semiarid region. Eur J Agron 109:125918. https://doi.org/10.1016/j.eja.2019.125918

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Department of Soil Science and Agricultural Chemistry, Banaras Hindu University, Varanasi, India for providing adequate research facility. The first author would like thank the Indian Council of Agricultural Research (ICAR), New Delhi, India, for granting the National Talent Scholarship in this research program. Further, authors would like to thank respected anonymous reviewers for their valuable suggestions which helped us to improve the quality of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Kundu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, A., Raha, P. & Dubey, A.N. Impact of Source and Method of Potassium Application on Dry Matter Accumulation and Partitioning of Potassium in Rice (Oryza sativa L.). J Soil Sci Plant Nutr 21, 2252–2263 (2021). https://doi.org/10.1007/s42729-021-00518-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-021-00518-9

Keywords

Navigation