Skip to main content
Log in

Protective Effect of Methyl Jasmonate on Photosynthetic Performance and Its Association with Antioxidants in Contrasting Aluminum-Resistant Blueberry Cultivars Exposed to Aluminum

  • Research Article
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Methyl jasmonate (MeJA) protective effect on photosynthetic performance and its association with antioxidants in two highbush blueberry (Vaccinium corymbosum L.) cultivars with contrasting aluminum (Al) resistance under Al toxicity was determined. Legacy (Al-resistant) and Bluegold (Al-sensitive) cultivars were subjected to control, MeJA, Al, and their combination (Al+MeJA) for 0, 24, and 48 h under greenhouse conditions. Al concentration, oxidative damage (malondialdehyde (MDA) and H2O2 concentrations), antioxidant activity (AA), superoxide dismutase (SOD) and catalase (CAT) activities, total polyphenols (TPP), chlorogenic acid, and in vivo photosynthetic performance were determined. The exposure to Al toxicity increased the Al concentration (up to 15-fold) and oxidative damage (up to 5.5-fold) compared to the control at 48 h, despite the antioxidant responses (SOD and CAT activities) were increased (up to 4-fold), mainly in the Al-sensitive cultivar at 48 h. Concomitantly, the photosynthetic performance was strongly reduced in the Al-sensitive cultivar (1.6-fold), while the Al-resistant cultivar was more stable during the experiment. However, when cultivars were exposed to Al+MeJA, the Al accumulation and oxidative damage strongly decreased (7-fold and 1.6-fold, respectively), increasing AA, SOD and CAT activities, and TPP in both cultivars during the first hours of Al exposure. The MeJA application decreased Al uptake and stimulated antioxidant pathways, which may counteract the toxic Al effects, protecting the photosynthetic apparatus in both cultivars, being more evident in the Al-sensitive cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali S, Zeng F, Qiu L, Zhang G (2011) The effect of chromium and aluminum on growth, root morphology, photosynthetic parameters and transpiration of the two barley cultivars. Biol Plant 55:291–296

    Article  CAS  Google Scholar 

  • Balk J, Schaedler TA (2014) Iron cofactor assembly in plants. Annu Rev Plant Biol 65:125–153

    Article  CAS  PubMed  Google Scholar 

  • Banhos OFAA, Carvalho BM dO, da Veiga EB, Bressan ACG, Tanaka FAO, Habermann G (2016) Aluminum-induced decrease in CO2 assimilation in ‘Rangpur’ lime is associated with low stomatal conductance rather than low photochemical performances. Scientia Hort 205:133–140

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Briat JF, Dubos C, Gaymard F (2015) Iron nutrition, biomass production, and plant product quality. Trends Plant Sci 20:33–40

    Article  CAS  PubMed  Google Scholar 

  • Chen L-S, Qi Y-P, Liu X-H (2005a) Effects of aluminum on light energy utilization and photoprotective systems in citrus leaves. Ann Bot 96:35–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L-S, Qi Y-P, Smith BR, Liu XH (2005b) Aluminum-induced decrease in CO2 assimilation in citrus seedlings is unaccompanied by decreased activities of key enzymes involved in CO2 assimilation. Tree Physiol 25:317–324

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Yan Z, Li X (2014) Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotox Environ Saf 104:349–356

    Article  CAS  Google Scholar 

  • Chinnici F, Bendini A, Gaiani A, Riponi C (2004) Radical scavenging activities of peels and pulps from cv. Golden delicious apples as related to their phenolic composition. J Agr Food Chem 52:4684–4689

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams IIIWW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    Article  CAS  Google Scholar 

  • Du Z, Bramlage WJ (1992) Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J Agric Food Chem 40:1556–1570

    Article  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:1–18

    Article  CAS  Google Scholar 

  • Farooq MA, Gill RA, Islam F, Ali B, Liu H, Xu J, He S, Zhou W (2016) Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L. Front Plant Sci 11:468

    Google Scholar 

  • Fleming J, Joshi JG (1987) Ferritin: isolation of aluminum–ferritin complex from brain. Proc Natl Acad Sci U S A 84:7866–7870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Plazaola JI, Becerril JM (1999) A rapid HPLC method to measure liphophilic antioxidant in stressed plants: simultaneous determination of carotenoids and tocopherols. Phytochem Anal 10:307–313

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases. I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanaka A, Wójcik M, Dresler S, Mroczek-Zdyrska M, Maksymiec W (2016) Does methyl jasmonate modify the oxidative stress response in Phaseolus coccineus treated with Cu? Ecotox Environ Saf 124:480–488

  • Hasni I, Yaakoubi H, Hamdani S, Tajmir-Riahi H-A, Carpentier R (2015a) Mechanism of interaction of Al3+ with the proteins composition of photosystem II. PLoS One 10:e0120876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasni I, Msilini N, Hamdani S, Tajmir-Riahi H-A, Carpentier R (2015b) Characterization of the structural changes and photochemical activity of photosystem I under Al3+ effect. J Photochem Photobiol B Biol 149:292–299

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1959) The water culture method for growing plants without soil. California Agr Expt Sta 347:1–32

    Google Scholar 

  • Inostroza-Blancheteau C, Soto B, Ulloa P, Aquea F, Reyes-Díaz M (2008) Resistance mechanisms of aluminum (Al3+) phytotoxicity in cereals: physiological, genetic and molecular bases. J Soil Sci Plant Nutr 8:57–71

  • Ismail A, Riemann M, Nick P (2012) The jasmonate pathway mediates salt tolerance in grapevines. J Exp Bot 63:2127–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov AG, Sane PV, Hurry V, Öquist G, Hüner NPA (2008) Photosystem II reaction centre quenching: mechanisms and physiological role. Photosynth Res 98:565–574

    Article  CAS  PubMed  Google Scholar 

  • Jiang HX, Chen LS, Zheng J-G, Han S, Tang N, Smith BR (2008) Aluminum-induced effects on photosystem II photochemistry in Citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol 28:1863–1871

    Article  CAS  PubMed  Google Scholar 

  • Keramat B, Kalantari KM, Arvin MJ (2009) Effects of methyl jasmonate in regulating cadmium induced oxidative stress in soybean plant (Glycine max L.). Afr J Microbiol Res 3:240–244

  • Kochian LV, Piñeros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:571–598

    Article  CAS  PubMed  Google Scholar 

  • Kulbat K (2016) The role of phenolic compounds in plant resistance. Biotechnol Food Sci 80:97–108

    Google Scholar 

  • Larronde F, Gaudillière JP, Krisa S, Decendit A, Deffieux G, Mérillon JM (2003) Airborne methyl jasmonate induces stilbene accumulation in leaves and berries of grapevine plants. Am J Enol Vitic 54:60–63

    Google Scholar 

  • Li Z, Xing D (2011) Mechanistic study of mitochondria dependent programmed cell death induced by aluminum phytotoxicity using fluorescence techniques. J Exp Bot 62:331–343

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Xing F, Xing D (2012) Characterization of target site of aluminum phytotoxicity in photosynthetic electron transport by fluorescence techniques in tobacco leaves. Plant Cell Physiol 53:1295–1309

    Article  CAS  PubMed  Google Scholar 

  • Lidon FC, Barreiro MG, Ramalho JDC, Lauriano JA (1999) Effects of aluminum toxicity on nutrient accumulation in maize shoots: implications on photosynthesis. J Plant Nutr 22:397–416

    Article  CAS  Google Scholar 

  • Locke AM, Ort DR (2014) Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture. J Exp Bot 65:6617–6627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    Article  CAS  Google Scholar 

  • McAinsh MR, Clayton H, Mansfield TA, Alistair M (1996) Hetherington changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiol 111:1031–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meriño-Gergichevich C, Alberdi M, Ivanov AG, Reyes-Díaz M (2010) Al3+-Ca2+ interaction in plants growing in acid soils: Al-phytotoxicity response tocalcareous amendments. J Soil Sci Plant Nutr 10:217–243

    Google Scholar 

  • Meriño-Gergichevich C, Ondrasek G, Zovko M, Šamec D, Alberdi M, Reyes-Díaz M (2015) Comparative study of methodologies to determine the antioxidant capacity of Al-toxified blueberry amended with calcium sulfate. J Soil Sci Plant Nutr 15:965–978

    Google Scholar 

  • Moustaka J, Ouzounidou G, Bayçu G, Moustakas M (2016) Aluminum resistance in wheat involves maintenance of leaf Ca(2+) and Mg(2+) content, decreased lipid peroxidation and Al accumulation, and low photosystem II excitation pressure. Biometals 29:611–623

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749

    Article  CAS  Google Scholar 

  • Pinhero RG, Rao MV, Paliyath G, Murr DP, Fletcher RA (1997) Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol 114:695–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piotrowska A, Bajguz A, Godlewska-żyłkiewicz B, Czerpak R, Kamińska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffiaarrhiza (Lemnaceae). J Exp Bot 66:507–513

    Article  CAS  Google Scholar 

  • Quinteiro Ribeiro MA, Furtado de Almeida A-A, Schramm Mielke M, Pinto Gomes F, Pires M, Baligar VC (2013) Aluminum effects on growth, photosynthesis, and mineral nutrition of cacao genotypes. J Plant Nutr 36:1161–1179

    Article  CAS  Google Scholar 

  • Reyes-Díaz M, Alberdi M, Mora ML (2009) Short-term aluminum stress differentially affects the photochemical efficiency of photosystem II in highbush blueberry genotypes. J Am Soc Hort Sci 134:14–21

  • Reyes-Díaz M, Inostroza-Blancheteau C, Millaleo R, Cruces E, Wulff-Zottele C, Alberdi M, Mora ML (2010) Long-term aluminum exposure effects on physiological and biochemical features of highbush blueberry cultivars. J Am Soc Hort Sci 135:212–222

    Article  Google Scholar 

  • Reyes-Díaz M, Meriño-Gergichevich C, Alarcón E, Alberdi M, Horst WJ (2011) Calcium sulfate ameliorates the effect of aluminum toxicity differentially in genotypes of highbush blueberry (Vacciniumcorymbosum L.). J Soil Sci Plant Nutr 11:59–78

    Article  Google Scholar 

  • Ribera AE, Reyes-Díaz M, Alberdi M, Zuniga GE, Mora ML (2010) Antioxidant compounds in skin and pulp of fruits change among genotypes and maturity stages in highbush blueberry (VacciniumcorymbosumL.) grown in southern Chile. J Soil Sci Plant Nutr 10:509–536

    Article  Google Scholar 

  • Roselló M, Poschenrieder C, Gunsé B, Barceló J, Llugany M (2015) Differential activation of genes related to aluminium tolerance in two contrasting rice cultivars. J Inorg Biochem 152:160–166

    Article  CAS  PubMed  Google Scholar 

  • Ryan PR, Delhaize E (2010) The convergent evolution of aluminium resistance in plants exploits a convenient currency. Funct Plant Biol 37:275–284

    Article  CAS  Google Scholar 

  • Sadzawka AM, Grez R, Carrasco MA, Mora ML (2004) Métodos de análisis de tejidos vegetales. Comisión de normalización y acreditación, sociedad chilena de la ciencia del suelo, In: Editorial salesianos impresores, Santiago, Chile, p.105

  • Shaff JE, Schultz BA, Craft EJ, Clark RT, Kochian LV (2010) GEOCHEM-EZ: a chemical speciation program with greater power and flexibility. Plant Soil 330:207–214

    Article  CAS  Google Scholar 

  • Silva S, Pinto G, Dias MC, Correia CM, Moutinho-Pereira J, Pinto-Carnide O, Santos C (2012) Aluminium long-term stress differently affects photosynthesis in rye genotypes. Plant Physiol Biochem 54:105–112

    Article  CAS  PubMed  Google Scholar 

  • Sirhindi G, Mir MA, Abd-Allah EF, Ahmad P, Gucel S (2016) Jasmonic acid modulates the physio-biochemical attributes, antioxidant enzyme activity, and gene expression in glycine max under nickel toxicity. Front Plant Sci 7:591

    Article  PubMed  PubMed Central  Google Scholar 

  • Slinkard K, Singleton VL (1977) Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 28:29–55

    Google Scholar 

  • Tighe-Neira R, Díaz-Harris R, Leonelli-Cantergiani G, Mejías-Lagos P, Iglesias-González C, Inostroza-Blancheteau C (2018) Effect of Ulex europaeus L. extracts on polyphenol concentration in Capsicum annuum L. and Lactuca sativa L. J Soil Sci Plant Nutr 18:893–903

    Google Scholar 

  • Ulloa-Inostroza EM, Alberdi M, Meriño-Gergichevich C, Reyes-Díaz M (2017) Low doses of exogenous methyl jasmonate applied simultaneously with toxic aluminum improves the antioxidant performance of Vaccinium corymbosum. Plant Soil 412:81–96

    Article  CAS  Google Scholar 

  • Xue YJ, Ling T, Yang ZM (2008) Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. J Agric Food Chem 56:9676–9684

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Chen J, Li X (2013) Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotox Environ Saf 98:203–209

  • Yang M, Tan L, Xu Y, Zhao Y, Cheng F, Ye S, Jiang W (2015) Effect of low pH and aluminum toxicity on the photosynthetic characteristics of different fast-growing eucalyptus vegetatively propagated clones. PLoS One 10:e0130963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XB, Liu P, Yang YS, Xu GD (2007) Effect of Al in soil on photosynthesis and related morphological and physiological characteristics of two soybean genotypes. Bot Stud 48:435–444

    CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful for FONDECYT Project no. 1171286 which supported this work and PhD fellowship no. 21110919, both from the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) of the Government of Chile, as well as the DI 13-2017, DI 15-2015, and DI 16-2011 Projects from the Dirección de Investigación at the Universidad de La Frontera, Temuco, Chile. Finally, we wish to thank Mariela Mora for her valuable assistance in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reyes-Díaz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulloa-Inostroza, E.M., Alberdi, M., Ivanov, A.G. et al. Protective Effect of Methyl Jasmonate on Photosynthetic Performance and Its Association with Antioxidants in Contrasting Aluminum-Resistant Blueberry Cultivars Exposed to Aluminum. J Soil Sci Plant Nutr 19, 203–216 (2019). https://doi.org/10.1007/s42729-019-0006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-019-0006-z

Keywords

Navigation