Skip to main content
Log in

Culturable bacteria associated with different developmental stages of Spodoptera litura (Fabricius) and their functional role

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Spodoptera litura (Fabricius) is a polyphagous pest causing economic losses to a number of agriculturally important crops. The present study aimed to investigate the changes in bacterial diversity during metamorphosis of insect using culturable techniques. Based on 16S rRNA sequencing, seventeen culturable bacteria were identified from different development stages of S. litura. Firmicutes were found to be the most abundant followed by Proteobacteria and Actinobacteria. The bacterial diversity varied across different developmental stages as indicated by Simpson and Shannon indices. The eggs supported less diverse bacterial flora consisting of Staphylococcus species. Further, different larval instars had a common baseline distribution of bacterial flora, with some bacterial species observed in specific instars only. The bacterial diversity decreased in the late pupal stage. The gut bacterial communities differed in male and female with Proteobacteria being more prominent in the later. Gut bacteria are known to play important role in host nutrition, digestion, detoxification, reproduction, communication etc. Therefore, in order to determine their functional role, S. litura larvae were fed on diet enriched with bacteria. None of the bacterial isolate influenced the fitness in terms of growth and development of S. litura. However, Serratia marcescens, Klebsiella pneumoniae and Pseudomonas paralactis lead to decrease the survival of S. litura. These results indicate that metamorphosis influences the gut bacterial diversity and the association between S. litura and its gut bacteria may be commensal or pathogenic. The study on culturable bacterial flora may pave the way to develop sustainable and environment friendly pest management approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or used during the study appeared in the submitted manuscript.

References

  • Ahmad M, Ghaffar A, Rafiq M (2013) Host plants of leaf worm, Spodoptera litura (Fabricius)(Lepidoptera: Noctuidae) in Pakistan. Asian J Agric Biol 1:23–28

    Google Scholar 

  • Almeida LGD, Moraes LA, Trigo JR, Omoto C, Consoli FL (2017) The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PLoS ONE 12(3):e0174754

    Article  PubMed  PubMed Central  Google Scholar 

  • Anand AAP, Vennison SJ, Sankar SG, Gilwax Prabhu DI, Vasan PT, Raghuraman T, Jerome Geoffrey C, Vendan SE (2010) Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. J Insect Sci 10(1):107

    PubMed  PubMed Central  Google Scholar 

  • Appel HM (1994) The chewing herbivore gut lumen: physicochemical conditions and their impact on plant nutrients, allelo-chemicals and insect pathogens. In: Bernays EA (ed) Insect-Plant Interactions, vol 5. CRC Press, Boca Raton, FL, pp 209–221. https://doi.org/10.1201/9780203711651

    Chapter  Google Scholar 

  • Bapatla KG, Singh A, Yeddula S, Patil RH (2018) Annotation of gut bacterial taxonomic and functional diversity in Spodoptera litura and Spilosoma obliqua. J Basic Microbiol 58(3):217–226

    Article  CAS  PubMed  Google Scholar 

  • Berlanga M, Llorens C, Comas J, Guerrero R (2016) Gut bacterial community of the xylophagous cockroaches Cryptocercus punctulatus and Parasphaeria boleiriana. PLoS One 11(4):e0152400

    Article  PubMed  PubMed Central  Google Scholar 

  • Bignell DE, Eggleton P (1995) On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Insectes Soc 42(1):57–69

    Article  Google Scholar 

  • Brinkmann N, Martens R, Tebbe CC (2008) Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of Manduca sexta (Sphingidae, Lepidoptera, Insecta). Appl Environ Microbiol 74(23):7189–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceja-Navarro JA, Vega FE, Karaoz U, Hao Z, Jenkins S, Lim HC, Kosina P, Infante F, Northen TR, Brodie EL (2015) Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat Commun 6:7618

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Teh BS, Sun C, Hu S, Lu X, Boland W, Shao Y (2016) Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci Rep 6(1):29505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colman DR, Toolson EC, Takacs-Vesbach CD (2012) Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol 21(20):5124–5137

    Article  CAS  PubMed  Google Scholar 

  • Dillon RJ, Vennard CT, Charnley AK (2002) A note: gut bacteria produce components of a locust cohesion pheromone. J Appl Microbiol 92(4):759–763

    Article  CAS  PubMed  Google Scholar 

  • Douglas AE, Francois CLMJ, Minto LB (2006) Facultative ‘secondary’ bacterial symbionts and the nutrition of the pea aphid, Acyrthosiphon pisum. Physiol Entomol 31(3):262–269

    Article  CAS  Google Scholar 

  • Egert M, Wagner B, Lemke T, Brune A, Friedrich MW (2003) Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69(11):6659–6668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects–diversity in structure and function. FEMS Microbiol Rev 37(5):699–735

    Article  CAS  PubMed  Google Scholar 

  • Engel P, Stepanauskas R, Moran NA (2014) Hidden diversity in honey bee gut symbionts detected by single-cell genomics. PLoS Genet 10(9):e1004596

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao X, Li W, Luo J, Zhang L, Ji J, Zhu X, Wang L, Zhang S, Cui J (2019) Biodiversity of the microbiota in Spodoptera exigua (Lepidoptera: Noctuidae). J Appl Microbiol 126(4):1199–1208

    Article  CAS  PubMed  Google Scholar 

  • Gichuhi J, Sevgan S, Khamis F, Van den Berg J, du Plessis H, Ekesi S, Herren JK (2020) Diversity of fall armyworm, Spodoptera frugiperda and their gut bacterial community in Kenya. Peer J 8:e8701

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Serrano F, Pérez-Cobas AE, Rosas T, Baixeras J, Latorre A, Moya A (2020) The gut microbiota composition of the moth Brithys crini reflects insect metamorphosis. Microb Ecol 79(4):960–970

    Article  CAS  PubMed  Google Scholar 

  • Haloi K, Kalita MK, Nath R, Devi D (2016) Characterization and pathogenicity assessment of gut-associated microbes of muga silkworm Antheraea assamensis Helfer (Lepidoptera: Saturniidae). J Invertebr Pathol 138:73–85

    Article  CAS  PubMed  Google Scholar 

  • Hammer TJ et al (2017) Caterpillars lack a resident gut microbiome. Proc Natl Acad Sci 114(36):9641–9646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer TJ, McMillan WO, Fierer N (2014) Metamorphosis of a butterfly-associated bacterial community. PLoS ONE 9(1):e86995

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammer TJ, Moran NA (2019) Links between metamorphosis and symbiosis in holometabolous insects. Philos Trans R Soc B 374(1783):20190068

    Article  CAS  Google Scholar 

  • He C, Nan X, Zhang Z, Li M (2013) Composition and diversity analysis of the gut bacterial community of the oriental armyworm, Mythimna separata, determined by culture-independent and culture-dependent techniques. J Insect Sci 13(1):165

    PubMed  PubMed Central  Google Scholar 

  • Hroncova Z, Havlik J, Killer J, Doskocil I, Tyl J, Kamler M, Titera D, Hakl J, Mrazek J, Bunesova V, Rada V (2015) Variation in honey bee gut microbial diversity affected by ontogenetic stage, age and geographic location. PLoS ONE 10(3):e0118707

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson CR, Denney WC (2011) Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern magnolia (Magnolia grandiflora). Microb Ecol 61(1):113–122

    Article  PubMed  Google Scholar 

  • Kandler O, Weiss N (1986) Regular, nonsporing gram positive rods. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, vol 2. Williams and Wilkins, Baltimore, MD, USA, pp 1208–1260

  • Ketola T, Mikonranta L, Laakso J, Mappes J (2016) Different food sources elicit fast changes to bacterial virulence. Biol Lett 12(1):20150660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JK, Han SH, Kim CH, Jo YH, Futahashi R, Kikuchi Y, Fukatsu T, Lee BL (2014) Molting-associated suppression of symbiont population and up-regulation of antimicrobial activity in the midgut symbiotic organ of the Riptortus–Burkholderia symbiosis. Dev Comp Immunol 43(1):10–14

    Article  CAS  PubMed  Google Scholar 

  • Krieg NR, Holt JG (1986) Gram-negative aerobic rods and cocci. In: Palleroni NJ (ed) Bergeys’s Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore, pp 140–218. 1

    Google Scholar 

  • Lambais MR, Crowley DE, Cury JC, Bull RC, Rodrigues RR (2006) Bacterial diversity in tree canopies of the Atlantic forest. Science 312(5782):1917

    Article  CAS  PubMed  Google Scholar 

  • Leroy PD, Sabri A, Verheggen FJ, Francis F, Thonart P, Haubruge E (2011) The semiochemically mediated interactions between bacteria and insects. Chemoecology 21(3):113–122

    Article  CAS  Google Scholar 

  • Li X et al (2017) Molecular evolutionary mechanisms driving functional diversification of α-glucosidase in Lepidoptera. Sci Rep 7(1):1–13

    Google Scholar 

  • Lin XL, Pan QJ, Tian HG, Douglas AE, Liu TX (2015) Bacteria abundance and diversity of different life stages of Plutella xylostella (Lepidoptera: Plutellidae), revealed by bacteria culture-dependent and PCR‐DGGE methods. Insect Sci 22(3):375–385

    Article  CAS  PubMed  Google Scholar 

  • Machado-Ferreira E, Vizzoni VF, Piesman J, Gazeta GS, Soares CAG (2015) Bacteria associated with Amblyomma cajennense tick eggs. Genet Mol Biol 38(4):477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Solis M, Collado MC, Herrero S (2020) Influence of diet, sex, and viral infections on the gut microbiota composition of Spodoptera exigua caterpillars. Front Microbiol 6:11753

    Google Scholar 

  • Mason CJ, Lowe-Power TM, Rubert-Nason KF, Lindroth RL, Raffa KF (2016) Interactions between bacteria and aspen defense chemicals at the phyllosphere-herbivore interface. J Chem Ecol 42:193–201. doi: https://doi.org/10.1007/s10886-016-0677-z

    Article  CAS  PubMed  Google Scholar 

  • Nalepa CA (2017) What kills the hindgut flagellates of lower termites during the host molting cycle? Microorganisms 5(4):82

    Article  PubMed Central  Google Scholar 

  • Niyazi N, Lauzon CR, Shelly TE (2004) Effect of probiotic adult diets on fitness components of sterile male Mediterranean fruit flies (Diptera: Tephritidae) under laboratory and field cage conditions. J Econ Entomol 97(5):1570–1580

    Article  PubMed  Google Scholar 

  • Phalnikar K, Kunte K, Agashe D (2019) Disrupting butterfly caterpillar microbiomes does not impact their survival and development. Proc R Soc B 286(1917):20192438

  • Priya NG, Ojha A, Kajla MK, Raj A, Rajagopal R (2012) Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS ONE 7(1):e30768

    Article  PubMed  Google Scholar 

  • Ramya SL, Venkatesan T, Srinivasa Murthy K, Jalali SK, Verghese A (2016) Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation. Braz J Microbiol 47(2):327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson CJ, Schloss P, Ramos Y, Raffa K, Handelsman J (2010) Robustness of the bacterial community in the cabbage white butterfly larval midgut. Microb Ecol 59:199–211

    Article  PubMed  Google Scholar 

  • Schafer A, Konrad R, Kuhnigk T, Kampfer P, Hertel H, König H (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol 80(5):471–478

    Article  CAS  PubMed  Google Scholar 

  • Schwarz MT, Kneeshaw D, Kembel SW (2018) The gut-associated microbiome of the eastern spruce budworm does not influence larval growth or survival. bioRxiv 330928

  • Shao Y, Arias-Cordero E, Guo H, Bartram S, Boland W (2014) In vivo Pyro-SIP assessing active gut microbiota of the cotton leafworm, Spodoptera littoralis. PLoS ONE 9(1):e85948

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao Y, Chen B, Sun C, Ishida K, Hertweck C, Boland W (2017) Symbiont-derived antimicrobials contribute to the control of the lepidopteran gut microbiota. Cell Chem Biol 24(1):66–75

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Wang L, Zhang H (2012) Low diversity bacterial community and the trapping activity of metabolites from cultivable bacteria species in the female reproductive system of the oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae). Int J Mol Sci 13(5):6266–6278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuan SJ, Yeh CC, Atlihan R, Chi H, Tang LC (2016) Demography and consumption of Spodoptera litura (Lepid optera: Noctuidae) reared on cabbage and taro. J Econ Entomol 109(2):732–739

    Article  PubMed  Google Scholar 

  • Vilanova C, Baixeras J, Latorre A, Porcar M (2016) The generalist inside the specialist: gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front Microbiol 7:1005

    Article  PubMed  PubMed Central  Google Scholar 

  • Visotto LE et al (2009) Contribution of gut bacteria to digestion and development of the velvetbean caterpillar, Anticarsia gemmatalis. J Insect Physiol 55(3):185–191

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Yao Z, Zheng W, Zhang H (2014) Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 pyrosequencing. PLoS ONE 9(9):e0106988

    Google Scholar 

  • Wang X, Sun S, Yang X, Cheng J, Wei H, Li Z, Michaud JP, Liu X (2020) Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front Microbiol 11:1366

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Gilbreath TM III, Kukutla P, Yan G, Xu J (2011) Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS ONE 6(9):e24767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450(7169):560–565

    Article  CAS  PubMed  Google Scholar 

  • Whitaker MRL et al (2016) Microbial communities of lycaenid butterflies do not correlate with larval diet. Front Microbiol 7:1920

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia X, Gurr GM, Vasseur L, Zheng D, Zhong H, Qin B, Lin J, Wang Y, Song F, Li Y, Lin H (2017) Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory. Front Microbiol 8:663

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia X, Lan B, Tao X, Lin J, You M (2020) Characterization of Spodoptera litura gut bacteria and their role in feeding and growth of the host. Front Microbiol 11:1492

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia X, Zheng D, Zhong H, Qin B, Gurr GM, Vasseur L, Lin H, Bai J, He W, You M (2013) DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS ONE 8(7):68852

    Article  Google Scholar 

  • Yalashetti S, Yandigeri MS, Rudrappa O, Muthugounder M, Gopalasamy S (2017) Diversity of culturable and unculturable gut bacteria associated with field population of Spodoptera litura (Fab.). Bull Env Pharmacol Life Sci 6(2):441–451

    Google Scholar 

  • Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, Yoon C, Nam YD, Kim YJ, Choi JH, Kim JY (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 80(17):5254–5264

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaspel JM, Hoy MA (2008) Microbial diversity associated with the fruit-piercing and blood-feeding moth Calyptra thalictri (Lepidoptera: Noctuidae). Ann Entomol Soc 101(6):1050–1055

    Article  CAS  Google Scholar 

  • Zhou Z (2009) A review on control of tobacco caterpillar, Spodoptera litura. Chin Bull Entomol 46(3):354–361

    Google Scholar 

  • Zhuo FP, Chen SJ, Yin YP, Wang ZK, Xia YX (2004) Analysis on the Hepialus gonggaensis intestinal bacterial flora. J Chongqing Univ Nat Sci Ed 27:26–29

    Google Scholar 

Download references

Acknowledgements

Financial assistance received from University Grants Commission (UGC), Government of India, New Delhi, is duly acknowledged.

Funding

University Grants Commission (UGC), Government of India, New Delhi (Grant number 484).

Author information

Authors and Affiliations

Authors

Contributions

Sanehdeep Kaur* and Harvinder Singh Saini conceived and designed the experiments. Sarita Devi performed the experiments, maintained the insect culture, analyzed the data and prepared the manuscript with the help of Sanehdeep Kaur*, Harvinder Singh Saini, Sunaina Sarkhandia and Rohit Mahajan.

Corresponding author

Correspondence to Sanehdeep Kaur.

Ethics declarations

The authors declare no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, S., Sarkhandia, S., Mahajan, R. et al. Culturable bacteria associated with different developmental stages of Spodoptera litura (Fabricius) and their functional role. Int J Trop Insect Sci 42, 2995–3008 (2022). https://doi.org/10.1007/s42690-022-00832-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-022-00832-4

Keywords

Navigation