Skip to main content
Log in

Identification of insecticidal molecule aucubin from Metarhizium anisopliae ethyl acetate crude extract against disease mosquito vector

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Identification of insecticidal compounds from the entomopathogenic fungus Metarhizium anisopliae crude extract was performed by TLC and column fractionation. From the fractionation four fractions were separated and tested for larvicidal, pupicidal and adulticidal potential against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus mosquitoes. Among the four fractions the fraction-3 was most effective against larvae with LC50 values, 1.238, 1.300 and 2.899 for pupae, 1.440, 1.657, 2.593 and adult, 1.988, 2.037 and 4.086 µg/ml against Ae. aegypti, An. stephensi and Cx. quinquefasciatus at 24 h post treatment respectively. The effective fraction-3 were charectrized through FT-IR, UV–Vis spectroscopy, 13C-NMR and 1H-NMR, HPLC, and LC–MS analysis allowed to identifying the effective compound in fraction-3. Overall, the results confirmed the use of the fungus derived molecules as an active green pesticide against mosquito vectors of public importance and led to the identification of highly effective mosquitocidal products. In particular the toxic activity of aucubin far encompassed that of the large majority of earlier studied microbial insecticides, making this molecule an ideal candidate for the development of insecticides in the “real world”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18(2):265–267

    Article  CAS  Google Scholar 

  • Amiri-Besheli B, Khambay B, Cameron S, Deadman ML, Butt TM (2000) Inter-and intra-specific variation in destruxin production by insect pathogenic Metarhizium spp., and its significance to pathogenesis. Mycol Res 104(4):447–452

    Article  CAS  Google Scholar 

  • Annapoorani CA, Manimegalai K (2013) Screening of medicinal plant Momordica charantia leaf for secondary metabolites. Int J Pharm Res Develop 5(3):1–6

    Google Scholar 

  • Baatrup E, Bayley M (1993) Effects of the pyrethroid insecticide cypermethrin on the locomotor activity of the wolf spider Pardosa amentata: quantitative analysis employing computer-automated video tracking. Ecotoxicol Environ Saf 26(2):138–152

    Article  PubMed  CAS  Google Scholar 

  • Benelli G (2015) The best time to have sex: mating behaviour and effect of daylight time on male sexual competitiveness in the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae). Parasitol Res 114(3):887–894

    Article  PubMed  Google Scholar 

  • Benelli G, Mehlhorn H (2016) Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115(5):1747–1754

    Article  PubMed  Google Scholar 

  • Bream AS, El-Sheikh TM, Fouda MA, Hassan MI (2010) Larvicidal and repellent activity of extracts derived from aquatic plant Echinochloa stagninum against Culex pipiens. Tunis J Plant Prot 5:107–123

    Google Scholar 

  • Childers MC, Daggett V (2017) Insights from molecular dynamics simulations for computational protein design. Mol Syst Des Eng 2(1):9–33. https://doi.org/10.1039/c6me00083e

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denlinger DS, Creswell JA, Anderson JL, Reese CK, Bernhardt SA (2016) Diagnostic doses and times for Phlebotomus papatasi and Lutzomyia longipalpis sand flies (Diptera: Psychodidae: Phlebotominae) using the CDC bottle bioassay to assess insecticide resistance. Parasites Vectors 9(1):1–11

    Article  Google Scholar 

  • Dhivya R, Manimegalai K (2013) Preliminary phytochemical screening and GC-MS profiling of ethanolic flower extract of Calotropis gigantea Linn. (Apocynaceae). J Pharm Phytochem 2(3):28–32

    Google Scholar 

  • Fang W, Vega-Rodrıguez J, Ghosh AK, Jacobs-Lorena M, Kang A, St Leger RJ (2011) Development of transgenic fungus that kill human malaria parasites in mosquitoes. Sci 331:1074–1077

    Article  CAS  Google Scholar 

  • Gaddaguti V, Mounika SJ, Sowjanya K, Rao T, Chakravarthy MSRK, Allu R (2012) GC-MS analysis and in silico molecular docking studies of mosquito repellent compounds from Hyptis suaveolens. Int J Biomass Rene 1:36–41

    Google Scholar 

  • Gao Q, Jin K, Ying SH, Zhang Y, Xiao G, Shang Y, Duan Z, Hu X, Xie XQ, Zhou G, Peng G (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 7(1):e1001264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giner M, Vassal C, Damiand G (1999) Windl, version 2.0. CIRAD (Centre de coope´ration Internationale en Recherche Agronomique pour le De´veloppement, Montpellier, France

  • Greenfield M, Pareja R, Ortiz V, Gómez-Jiménez MI, Vega FE, Parsa S (2015) A novel method to scale up fungal endophyte isolations. Biocon Sci Technol 25(10):1208–1212

    Article  Google Scholar 

  • Liu Y, Sheng Z, Liu H, Wen D, He Q, Wang S, Shao W, Jiang RJ, An S, Sun Y, Bendena WG (2009) Juvenile hormone counteracts the bHLH-PAS transcription factors MET and GCE to prevent caspase-dependent programmed cell death in Drosophila. Dev 136(12):2015–2025

    Article  CAS  Google Scholar 

  • Ment D, Churchill AC, Gindin G, Belausov E, Glazer I, Rehner SA, Rot A, Donzelli BG, Samish M (2012) Resistant ticks inhibit Metarhizium infection prior to haemocoel invasion by reducing fungal viability on the cuticle surface. Env Microbiol 14(6):1570–1583

    Article  CAS  Google Scholar 

  • Ravindran K, Akutse KS, Sivaramakrishnan S, Wang L (2016) Determination and characterization of destruxin production in Metarhizium anisopliae Tk6 and formulations for Aedes aegypti mosquitoes control at the field level. Toxicon 120:89–96

    Article  PubMed  CAS  Google Scholar 

  • Rawani A, Ghosh A, Chandra G (2010) Mosquito larvicidal activities of Solanum nigrum L. leaf extract against Culex quinquefasciatus Say. Parasitol Res 107(5):1235–1240

    Article  PubMed  Google Scholar 

  • Seif AI, Shaarawi FA (2003) Preliminary field trials with Culicinomyces clavosporus against some Egyptian mosquitoes in selected habitats. J Egyptian Soc Parasitol 33(1):291–304

    Google Scholar 

  • Serit MA, Yap HH (1984) Comparative bioassays of Tolypocladium cylindrosporum Gams (Californian strain) against four species of mosquitoes in Malaysia. Southeast Asian J Trop Med Public Health 15(3):331–336

    PubMed  CAS  Google Scholar 

  • Sharma M, Saxena RC (1994) Phytotoxicological evaluation of Tagete serectes on aquatic stages of Anopheles stephensi. Indian J Malariol 31:21–26

    PubMed  CAS  Google Scholar 

  • Soonwera M, Phasomkusolsil S (2016) Effect of Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae. Parasitol Res 115(4):1691–1703

    Article  PubMed  Google Scholar 

  • Sowjanya Sree K, Padmaja V, Murthy YL (2008) Insecticidal activity of destruxin, a mycotoxin from Metarhizium anisopliae (Hypocreales), against Spodoptera litura (Lepidoptera: Noctuidae) larval stages. Pest Manag Sci 64(2):119–125

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan R, Natarajan D, Shivakumar MS (2017) Spectral characterization and antibacterial activity of an isolated compound from Memecylon edule leaves. J Photochem Photobiol B: Biol 168:20–24

    Article  CAS  Google Scholar 

  • Tundis R, Loizzo MR, Menichini F, Statti GA, Menichini F (2008) Biological and pharmacological activities of iridoids: recent developments. Med Chem 8(4):399–420

    CAS  Google Scholar 

  • Vázquez-Martínez MG, Rodríguez-Meneses A, Rodríguez AD, Rodríguez MH (2013) Lethal effects of Gliocladium virens, Beauveria bassiana and Metarhizium anisopliae on the malaria vector Anopheles albimanus (Diptera: Culicidae). Biocon Sci Technol 23(9):1098–1109

    Article  Google Scholar 

  • Viljoen A, Mncwangi N, Vermaak I (2012) Anti-inflammatory iridoids of botanical origin. Curr Med Chem 19:2104–2127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vivekanandhan P, Kavitha T, Karthi S, Senthil-Nathan S, Shivakumar MS (2018a) Toxicity of Beauveria bassiana-28 mycelial extracts on larvae of Culex quinquefasciatus mosquito (Diptera: Culicidae). Int J Env Res Public Health 15(3):440

    Article  Google Scholar 

  • Vivekanandhan P, Karthi S, Shivakumar MS, Benelli G (2018b) Synergistic effect of entomopathogenic fungus Fusarium oxysporum extract in combination with temephos against three major mosquito vectors. Pathog Glob Health 112(1):37–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vivekanandhan P, Deepa S, Kweka EJ, Shivakumar MS (2018c) Toxicity of Fusarium oxysporum-VKFO-01 derived silver nanoparticles as potential inseciticide against three mosquito vector species (Diptera: Culicidae). J Clust Sci 29(6):1139–1149

    Article  CAS  Google Scholar 

  • Vivekanandhan P, Bedini S, Shivakumar MS (2020a) Isolation and identification of entomopathogenic fungus from Eastern Ghats of South Indian forest soil and their efficacy as biopesticide for mosquito control. Parasitol Int 102099

  • Vivekanandhan P, Swathy K, Kalaimurugan D, Ramachandran M, Yuvaraj A, Kumar AN, Manikandan AT, Poovarasan N, Shivakumar MS, Kweka EJ (2020b) Larvicidal toxicity of Metarhizium anisopliae metabolites against three mosquito species and non-targeting organisms. PLoS ONE 15(5):e0232172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vivekanandhan P, Swathy K, Murugan AC, Krutmuang P (2022) Insecticidal efficacy of Metarhizium anisopliae derived chemical constituents against disease-vector mosquitoes. J Fungi 8(3):300

    Article  CAS  Google Scholar 

  • Vivekanandhan P, Thendralmanikandan A, Kweka EJ, Mahande AM (2021) Resistance to temephos in Anopheles stephensi larvae is associated with increased cytochrome P450 and α-esterase genes overexpression. Int J Trop Insect Sci 41(4):2543–2548

    Article  Google Scholar 

  • WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. WHO, Geneva. WHO/CDS/WHOPES/GCDPP/1.3

  • Xu YJ, Luo F, Li B, Shang Y, Wang C (2016) Metabolic conservation and diversification of Metarhizium species correlate with fungal host specificity. Front Microbiol 7:2020

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Mr. P. Vivekanandhan acknowledges Periyar University for providing financial support under University Research Fellowship Scheme (Ref No. PU/AD-3/161619/URF/2016).

Author information

Authors and Affiliations

Authors

Contributions

P. Vivekanandhan and M.S. Shivakumar designed the experiments; P. Vivekanandhan conducted the experiments and K. Swathy analyzed experimental results. P. Vivekanandhan interpreted the data and wrote the manuscript; M.S. Shivakumar and P. Vivekanandhan revised and approved the final manuscript.

Corresponding author

Correspondence to M. S. Shivakumar.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivekanandhan, P., Swathy, K. & Shivakumar, M.S. Identification of insecticidal molecule aucubin from Metarhizium anisopliae ethyl acetate crude extract against disease mosquito vector. Int J Trop Insect Sci 42, 3303–3318 (2022). https://doi.org/10.1007/s42690-022-00828-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-022-00828-0

Keywords

Navigation