Skip to main content
Log in

NBS-LRR gene family in banana (Musa acuminata): genome-wide identification and responses to Fusarium oxysporum f. sp. cubense race 1 and tropical race 4

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

As the largest family among the plant resistance (R) proteins, the nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins play significant roles in the defense of pathogens. The completion and improvement of banana reference sequence make a systematic insight into the banana NBS-LRR protein family possible. In this study, a total of 98 NBS-LRR proteins were identified from the banana genome and clustered into eight classes in the phylogenetic tree. NBS-LRR genes were unevenly distributed on all 11 chromosomes of banana. Typical NB-ARC (nucleotide binding-APAF-1, disease resistance proteins, CED-4) and LRR motifs were found in all NBS-LRR proteins and a small number of introns existed in most NBS-LRR genes. Transcriptional profiles of NBS-LRRs were investigated in Fusarium oxysporum f. sp. cubense (Foc) susceptible and resistant banana cultivars BX and HDJ challenged with Foc race 1 (Foc 1) and tropical race 4 (Foc TR4). Among 31 representative NBS-LRRs detected in this study, 12 members showed stronger transcriptional stimulation in HDJ than in BX, while in contrast, eight members exhibited higher expression in BX than in HDJ. This study advances our understanding of roles of banana NBS-LRRs in the defense of Fusarium wilt and will contribute to the genetic improvement of banana resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afrin, K. S., Rahim, M. A., Park, J. I., Natarajan, S., Kim, H. T., & Nou, I. S. (2018). Identification of NBS-encoding genes linked to black rot resistance in cabbage (Brassica oleracea var. capitata). Molecular Biology Reports, 45(5), 773–785. https://doi.org/10.1007/s11033-018-4217-5.

    Article  CAS  PubMed  Google Scholar 

  • Azhar, M., & Heslop-Harrison, J. (2008). Genomes, diversity and resistance gene analogues in Musa species. Cytogenetic and Genome Research, 121(1), 59–66.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, T. L., Johnson, J., Grant, C. E., & Noble, W. S. (2015). The MEME suite. Nucleic Acids Research, 43(W1), W39–W49. https://doi.org/10.1093/nar/gkv416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botella, M. A., Parker, J. E., Frost, L. N., Bittner-Eddy, P. D., Beynon, J. L., Daniels, M. J., Holub, E. B., & Jones, J. D. G. (1998). Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell, 10(11), 1847–1860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourras, S., McNally, K. E., Ben-David, R., Parlange, F., Roffler, S., Praz, C. R., Oberhaensli, S., Menardo, F., Stirnweis, D., Frenkel, Z., Schaefer, L. K., Flückiger, S., Treier, G., Herren, G., Korol, A. B., Wicker, T., & Keller, B. (2015). Multiple Avirulence loci and allele-specific effector recognition control the Pm3 race-specific resistance of wheat to powdery mildew. Plant Cell, 27(10), 2991–3012. https://doi.org/10.1105/tpc.15.00171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Zhong, H. Y., Kuang, J. F., Li, J. G., Lu, W. J., & Chen, J. Y. (2011). Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta, 234(2), 377–390. https://doi.org/10.1007/s00425-011-1410-3.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z., Zhao, W., Zhu, X., Zou, C., Yin, J., Chern, M., Zhou, X., Ying, H., Jiang, X., Li, Y., Liao, H., Cheng, M., Li, W., He, M., Wang, J., Wang, J., Ma, B., Wang, J., Li, S., Zhu, L., & Chen, X. (2018). Identification and characterization of rice blast resistance gene Pid4 by a combination of transcriptomic profiling and genome analysis. Journal of Genetics and Genomics, 45(12), 663–672. https://doi.org/10.1016/j.jgg.2018.10.007.

    Article  PubMed  Google Scholar 

  • Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., et al. (2020). TBtools - an integrative toolkit developed for interactive analyses of big biological data. bioRxiv, 289660. https://doi.org/10.1101/289660.

  • Dangl, J. L., & Jones, J. D. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411(6839), 826–833. https://doi.org/10.1038/35081161.

    Article  CAS  PubMed  Google Scholar 

  • D'Hont, A., Denoeud, F., Aury, J. M., Baurens, F. C., Carreel, F., Garsmeur, O., et al. (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 488(7410), 213–217. https://doi.org/10.1038/nature11241.

    Article  CAS  PubMed  Google Scholar 

  • Dita, M. A., Waalwijk, C., Buddenhagen, I. W., Souza Jr., M. T., & Kema, G. H. J. (2010). A molecular diagnostic for tropical race 4 of the banana fusarium wilt pathogen. Plant Pathology, 59(2), 348–357.

    Article  CAS  Google Scholar 

  • Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: Towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11(8), 539–548. https://doi.org/10.1038/nrg2812.

    Article  CAS  PubMed  Google Scholar 

  • Eddy, S. R. (2011). Accelerated profile HMM searches. PLoS Computational Biology, 7(10), e1002195. https://doi.org/10.1371/journal.pcbi.1002195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser-Smith, S., Czislowski, E., Meldrum, R., Zander, M., O'neill, W., Balali, G., et al. (2014). Sequence variation in the putative effector gene SIX 8 facilitates molecular differentiation of Fusarium oxysporum f. sp. cubense. Plant Pathology, 63(5), 1044–1052.

    Article  CAS  Google Scholar 

  • Friedman, A. R., & Baker, B. J. (2007). The evolution of resistance genes in multi-protein plant resistance systems. Current Opinion in Genetics & Development, 17(6), 493–499. https://doi.org/10.1016/j.gde.2007.08.014.

    Article  CAS  Google Scholar 

  • Gao, Y., Wang, W., Zhang, T., Gong, Z., Zhao, H., & Han, G. Z. (2018). Out of water: The origin and early diversification of plant R-genes. Plant Physiology, 177(1), 82–89. https://doi.org/10.1104/pp.18.00185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghag, S. B., Shekhawat, U. K. S., & Ganapathi, T. R. (2015). Fusarium wilt of banana: Biology, epidemiology and management. International Journal of Pest Management, 61(3), 250–263. https://doi.org/10.1080/09670874.2015.1043972.

    Article  Google Scholar 

  • Goyal, N., Bhatia, G., Sharma, S., Garewal, N., Upadhyay, A., Upadhyay, S. K., & Singh, K. (2020). Genome-wide characterization revealed role of NBS-LRR genes during powdery mildew infection in Vitis vinifera. Genomics, 112(1), 312–322. https://doi.org/10.1016/j.ygeno.2019.02.011.

    Article  CAS  PubMed  Google Scholar 

  • Guo, C., Sun, X., Chen, X., Yang, S., Li, J., Wang, L., & Zhang, X. (2015). Cloning of novel rice blast resistance genes from two rapidly evolving NBS-LRR gene families in rice. Plant Molecular Biology, 90(1–2), 95–105. https://doi.org/10.1007/s11103-015-0398-7.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, P. K., Langridge, P., & Mir, R. R. (2009). Marker-assisted wheat breeding: Present status and future possibilities. Molecular Breeding, 26(2), 145–161. https://doi.org/10.1007/s11032-009-9359-7.

    Article  Google Scholar 

  • Hassan, M. Z., Rahim, M. A., Jung, H. J., Park, J. I., Kim, H. T., & Nou, I. S. (2019). Genome-wide characterization of NBS-encoding genes in watermelon and their potential association with gummy stem blight resistance. International Journal of Molecular Sciences, 20(4). https://doi.org/10.3390/ijms20040902.

  • Hu, B., Jin, J., Guo, A. Y., Zhang, H., Luo, J., & Gao, G. (2015). GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 31(8), 1296–1297. https://doi.org/10.1093/bioinformatics/btu817.

    Article  PubMed  Google Scholar 

  • Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. https://doi.org/10.1038/nature05286.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, R. K., & Nayak, S. (2011). Functional characterization and signal transduction ability of nucleotide-binding site-leucine-rich repeat resistance genes in plants. Genetics and Molecular Research, 10(4), 2637–2652. https://doi.org/10.4238/2011.October.25.10.

    Article  CAS  PubMed  Google Scholar 

  • Kochetov, A. V., Glagoleva, A. Y., Strygina, K. V., Khlestkina, E. K., Gerasimova, S. V., Ibragimova, S. M., Shatskaya, N. V., Vasilyev, G. V., Afonnikov, D. A., Shmakov, N. A., Antonova, O. Y., Gavrilenko, T. A., Alpatyeva, N. V., Khiutti, A., & Afanasenko, O. S. (2017). Differential expression of NBS-LRR-encoding genes in the root transcriptomes of two Solanum phureja genotypes with contrasting resistance to Globodera rostochiensis. BMC Plant Biology, 17(Suppl 2), 251. https://doi.org/10.1186/s12870-017-1193-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M. H., Yu, X. T., Wang, H. F., Zhou, J. N., Xi, P. G., & Jiang, Z. D. (2012). Rapid detection and identification of Fusarium oxysporum f. sp. cubense race 1 and race 4. Scientia Agricultura Sinica, 45(19), 3971–3979.

    CAS  Google Scholar 

  • Li, C., Shao, J., Wang, Y., Li, W., Guo, D., Yan, B., et al. (2013). Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense. BMC Genomics, 14(1), 851.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, W., Li, C., Li, S., & Peng, M. (2017). Long noncoding RNAs that respond to Fusarium oxysporum infection in ‘Cavendish’ banana (Musa acuminata). Scientific Reports, 7(1), 16939. https://doi.org/10.1038/s41598-017-17179-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, T. G., Wang, B. L., Yin, C. M., Zhang, D. D., Wang, D., Song, J., Zhou, L., Kong, Z. Q., Klosterman, S. J., Li, J. J., Adamu, S., Liu, T. L., Subbarao, K. V., Chen, J. Y., & Dai, X. F. (2019). The Gossypium hirsutum TIR-NBS-LRR gene GhDSC1 mediates resistance against Verticillium wilt. Molecular Plant Pathology, 20(6), 857–876. https://doi.org/10.1111/mpp.12797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, W., Frick, M., Huel, R., Nykiforuk, C. L., Wang, X., Gaudet, D. A., Eudes, F., Conner, R. L., Kuzyk, A., Chen, Q., Kang, Z., & Laroche, A. (2014). The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Molecular Plant, 7(12), 1740–1755. https://doi.org/10.1093/mp/ssu112.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Inoue, H., Hayashi, N., Jiang, C. J., & Takatsuji, H. (2015). CC-NBS-LRR-type R proteins for Rice blast commonly interact with specific WRKY transcription factors. Plant Molecular Biology Reporter, 34(2), 533–537. https://doi.org/10.1007/s11105-015-0932-4.

    Article  CAS  Google Scholar 

  • Liu, H., Dong, S., Gu, F., Liu, W., Yang, G., Huang, M., Xiao, W., Liu, Y., Guo, T., Wang, H., Chen, Z., & Wang, J. (2017). NBS-LRR protein Pik-H4 interacts with OsBIHD1 to balance Rice blast resistance and growth by coordinating ethylene-Brassinosteroid pathway. Frontiers in Plant Science, 8, 127. https://doi.org/10.3389/fpls.2017.00127.

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods-A Companion to Methods in Enzymology, 25(4), 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Lozano, R., Hamblin, M. T., Prochnik, S., & Jannink, J. L. (2015). Identification and distribution of the NBS-LRR gene family in the cassava genome. BMC Genomics, 16, 360. https://doi.org/10.1186/s12864-015-1554-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Y., Xu, W. H., Xie, Y. X., Zhang, X., Pu, J. J., Qi, Y. X., & Li, H. P. (2011). Isolation and characterization of nucleotide-binding site and C-terminal leucine-rich repeat-resistance gene candidates in bananas. Genetics and Molecular Research, 10(4), 3098–3108. https://doi.org/10.4238/2011.December.15.1.

    Article  CAS  PubMed  Google Scholar 

  • Martin, G., Baurens, F. C., Droc, G., Rouard, M., Cenci, A., Kilian, A., Hastie, A., Doležel, J., Aury, J. M., Alberti, A., Carreel, F., & D’Hont, A. (2016). Improvement of the banana "Musa acuminata" reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics, 17, 243. https://doi.org/10.1186/s12864-016-2579-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, R. N., Bertioli, D. J., Baurens, F. C., Santos, C. M., Alves, P. C., Martins, N. F., Togawa, R. C., Souza, M. T., & Pappas, G. J. (2008). Analysis of non-TIR NBS-LRR resistance gene analogs in Musa acuminata Colla: Isolation, RFLP marker development, and physical mapping. BMC Plant Biology, 8, 15. https://doi.org/10.1186/1471-2229-8-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell, A. L., Attwood, T. K., Babbitt, P. C., Blum, M., Bork, P., Bridge, A., Brown, S. D., Chang, H. Y., el-Gebali, S., Fraser, M. I., Gough, J., Haft, D. R., Huang, H., Letunic, I., Lopez, R., Luciani, A., Madeira, F., Marchler-Bauer, A., Mi, H., Natale, D. A., Necci, M., Nuka, G., Orengo, C., Pandurangan, A. P., Paysan-Lafosse, T., Pesseat, S., Potter, S. C., Qureshi, M. A., Rawlings, N. D., Redaschi, N., Richardson, L. J., Rivoire, C., Salazar, G. A., Sangrador-Vegas, A., Sigrist, C. J. A., Sillitoe, I., Sutton, G. G., Thanki, N., Thomas, P. D., Tosatto, S. C. E., Yong, S. Y., & Finn, R. D. (2019). InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research, 47(D1), D351–D360. https://doi.org/10.1093/nar/gky1100.

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra, D., Mishra, S., & Sutar, N. (2010). Banana and its by-product utilisation: An overview. Journal of Scientific & Industrial Research, 69, 323–329.

    CAS  Google Scholar 

  • Mota, A. P. Z., Vidigal, B., Danchin, E. G. J., Togawa, R. C., Leal-Bertioli, S. C. M., Bertioli, D. J., Araujo, A. C. G., Brasileiro, A. C. M., & Guimaraes, P. M. (2018). Comparative root transcriptome of wild Arachis reveals NBS-LRR genes related to nematode resistance. BMC Plant Biology, 18(1), 159. https://doi.org/10.1186/s12870-018-1373-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, Q., Wendel, J., & Fluhr, R. (2000). Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. Journal of Molecular Evolution, 50(3), 203–213.

    Article  CAS  PubMed  Google Scholar 

  • Pei, X., Li, S., Jiang, Y., Zhang, Y., Wang, Z., & Jia, S. (2007). Isolation, characterization and phylogenetic analysis of the resistance gene analogues (RGAs) in banana (Musa spp.). Plant Science, 172(6), 1166–1174. https://doi.org/10.1016/j.plantsci.2007.02.019.

    Article  CAS  Google Scholar 

  • Peraza-Echeverria, S., Dale, J. L., Harding, R. M., Smith, M. K., & Collet, C. (2008). Characterization of disease resistance gene candidates of the nucleotide binding site (NBS) type from banana and correlation of a transcriptional polymorphism with resistance to Fusarium oxysporum f.sp. cubense race 4. Molecular Breeding, 22(4), 565–579. https://doi.org/10.1007/s11032-008-9199-x.

    Article  CAS  Google Scholar 

  • Richly, E., Kurth, J., & Leister, D. (2002). Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Molecular Biology and Evolution, 19(1), 76–84.

    Article  CAS  PubMed  Google Scholar 

  • Shao, Z. Q., Xue, J. Y., Wu, P., Zhang, Y. M., Wu, Y., Hang, Y. Y., Wang, B., & Chen, J. Q. (2016). Large-scale analyses of angiosperm nucleotide-binding site-Leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiology, 170(4), 2095–2109. https://doi.org/10.1104/pp.15.01487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao, Z. Q., Xue, J. Y., Wang, Q., Wang, B., & Chen, J. Q. (2019). Revisiting the origin of plant NBS-LRR genes. Trends in Plant Science, 24(1), 9–12. https://doi.org/10.1016/j.tplants.2018.10.015.

    Article  CAS  PubMed  Google Scholar 

  • Shi, J., Zhang, M., Zhai, W., Meng, J., Gao, H., Zhang, W., Han, R., & Qi, F. (2018). Genome-wide analysis of nucleotide binding site-leucine-rich repeats (NBS-LRR) disease resistance genes in Gossypium hirsutum. Physiological and Molecular Plant Pathology, 104, 1–8. https://doi.org/10.1016/j.pmpp.2018.07.007.

    Article  CAS  Google Scholar 

  • Sutanto, A., Sukma, D., Hermanto, C., & Sudarsono, S. (2014). Isolation and characterization of resistance gene analogue (RGA) from Fusarium resistant banana cultivars. Emirates Journal of Food and Agriculture, 26(6), 508. https://doi.org/10.9755/ejfa.v26i6.17219.

    Article  Google Scholar 

  • Tameling, W. I. L., & Takken, F. L. W. (2007). Resistance proteins: Scouts of the plant innate immune system. European Journal of Plant Pathology, 121(3), 243–255. https://doi.org/10.1007/s10658-007-9187-8.

    Article  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Yang, Y., Yuan, X., Xu, Q., Feng, Y., Yu, H., Wang, Y., & Wei, X. (2014). Genome-wide association study of blast resistance in indica rice. BMC Plant Biology, 14, 1–11.

    Article  Google Scholar 

  • Wang, L., Zhao, L., Zhang, X., Zhang, Q., Jia, Y., Wang, G., et al. (2019). Large-scale identification and functional analysis of NLR genes in blast resistance in the Tetep rice genome sequence. Proceedings of the National Academy of Sciences, 201910229.

  • Xu, L. B., Zhang, X., Gan, D., Huang, B., Chen, H., Feng, Z., et al. (2013). Introduction and trial planting of ‘Haigong Jiao' (Musa AA). Chinese Journal of Tropical Agriculture., 33(8), 24–28.

    Google Scholar 

  • Yu, J., Tehrim, S., Zhang, F., Tong, C., Huang, J., Cheng, X., Dong, C., Zhou, Y., Qin, R., Hua, W., & Liu, S. (2014). Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genomics, 15(1), 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y. M., Shao, Z. Q., Wang, Q., Hang, Y. Y., Xue, J. Y., Wang, B., & Chen, J. Q. (2016). Uncovering the dynamic evolution of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in Brassicaceae. Journal of Integrative Plant Biology, 58(2), 165–177. https://doi.org/10.1111/jipb.12365.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, Y., Zhang, X., & Cheng, Z. M. (2018). Lineage-specific duplications of NBS-LRR genes occurring before the divergence of six Fragaria species. BMC Genomics, 19(1), 128. https://doi.org/10.1186/s12864-018-4521-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, T., Wang, Y., Chen, J. Q., Araki, H., Jing, Z., Jiang, K., Shen, J., & Tian, D. (2004). Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Molecular Genetics and Genomics, 271(4), 402–415. https://doi.org/10.1007/s00438-004-0990-z.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Hainan province (No. 317258); the National Nonprofit Institute Research Grant ITBB 1630052016005; and the Special Fund for Agro-scientific Research in the Public Interest (No. 20153110).

Funding

This study was founded by the Natural Science Foundation of Hainan province (No. 317258); the National Nonprofit Institute Research Grant ITBB 1630052016005; and the Special Fund for Agro-scientific Research in the Public Interest (No. 20153110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Chang.

Ethics declarations

Conflict of interest

This is to confirm that this manuscript was not submitted for publication to any other journal. It is only submitted to this journal, EJPP. The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Table S1

IDs of 98 candidate NBS-LRR proteins identified in banana genome (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, W., Li, H., Chen, H. et al. NBS-LRR gene family in banana (Musa acuminata): genome-wide identification and responses to Fusarium oxysporum f. sp. cubense race 1 and tropical race 4. Eur J Plant Pathol 157, 549–563 (2020). https://doi.org/10.1007/s10658-020-02016-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02016-7

Keywords

Navigation