Skip to main content
Log in

Science and Innovation with Stratospheric Balloons: The Olimpo & Lspe/Swipe Projects

  • Original article
  • Published:
Aerotecnica Missili & Spazio Aims and scope Submit manuscript

Abstract

The measurement of the Cosmic Microwave Background (CMB) polarization and the spectral distortions produced on this radiation field by clusters of galaxies (Sunyaev-Zeldovich Effect, SZE) are the current frontiers in cosmology. In this paper, we report on two stratospheric balloon experiments aimed to study the research fields mentioned above. OLIMPO is a mm/submm waves telescope, with 2.6 m primary mirror coupled to four arrays of Kinetic Inductance Detectors (KID), centered at 150, 250, 350, and 460 GHz, to match the SZ spectrum, and operating at 0.3 K. The payload, flown in 2018 producing a very successful technology demonstration, includes a plug-in Differential Fourier-Transform Spectrometer. LSPE (Large Scale Polarization Explorer) is a combined balloon-borne and ground-based program dedicated to the measurement of the CMB polarization at large angular scales. LSPE/SWIPE (Short Wavelength Instrument for the Polarization Explorer), the balloon-borne instrument, includes a refractive telescope with a 50 cm optical aperture feeding three arrays of 330 multi-mode TES bolometers at 145, 210, e 240 GHz. The polarization of the incoming radiation will be modulated by a rotating Half Wave Plate (HWP), that is maintained levitating by an innovative magnetic suspension system. The detectors and the optical elements are cooled at cryogenic temperatures. The cryogenic system is designed to have a duration of 14 days with a flight performed during the polar night, to allow a coverage of a large fraction of the sky. In the paper, we describe the configuration of the two instruments, the modifications to be implemented on OLIMPO for a second scientific flight and the status of the different sub-system for LSPE/SWIPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kamionkowski, M., Kovetz, E.D.: The quest for B modes from inflationary gravitational waves. Ann. Rev. Astron. Astrophys. 54, 227–269 (2016)

    Article  Google Scholar 

  2. Tristram, M. et al.: Improved limits on the tensor-to-scalar ratio using BICEP and Planck. Phys. Rev. D 105, 083524 (2022)

  3. de Bernardis, P., et al.: Low-resolution spectroscopy of the Sunyaev-Zel’dovich effect and estimates of cluster parameters. Astron. Astrophys. 538, A86 (2012)

    Article  Google Scholar 

  4. Masi, S., et al.: Instrument, method, brightness, and polarization maps from the 2003 flight of BOOMERanG. Astron. Astrophys. 458, 687–716 (2006)

    Article  Google Scholar 

  5. Rabii, B., et al.: MAXIMA: a balloon-borne cosmic microwave background anisotropy experiment. Rev. Sci. Instrum. 77, 071101 (2006)

    Article  Google Scholar 

  6. Benoit, A., et al.: ARCHEOPS: a balloon experiment for measuring the cosmic microwave background anisotropies. Adv. Space Res. 33, 1790–1792 (2004)

    Article  Google Scholar 

  7. Silverberg, R.F., et al.: The tophat experiment: a balloon-borne instrument for mapping millimeter and submillimeter emission. Astrophys. J. Suppl. Ser. 160, 59 (2005). https://doi.org/10.1086/432117

    Article  Google Scholar 

  8. Fixsen, D.J., et al.: ARCADE 2 measurement of the absolute sky brightness at 3–90 GHz. Astrophys J 734, 5 (2011). https://doi.org/10.1088/0004-637X/734/1/5

    Article  Google Scholar 

  9. Pawlyk, S., et al.: The primordial inflation polarization explorer (PIPER): current status and performance of the first flight. SPIE Proc. Millim Submillimeter Far-Infrared Detect Instrum Astron IX 10708, 1070806 (2018). https://doi.org/10.1117/12.2313874

    Article  Google Scholar 

  10. Ade, P.A.R., et al.: A constraint on primordial B-modes from the first flight of the SPIDER balloon-borne telescope. Ap. J. 927, 174 (2022)

    Article  Google Scholar 

  11. EBEX Collaboration, Aboobaker, A.M., et al.: The EBEX balloon-borne experiment–optics, receiver, and polarimetry,. Astrophys. J. Suppl. Ser. 239, 7 (2018)

    Article  Google Scholar 

  12. Coppolecchia, A., et al.: The long duration cryogenic system of the OLIMPO balloon-borne experiment: design and in-flight performance. Cryogenics 110, 103129 (2020)

    Article  Google Scholar 

  13. D’Alessandro, G., et al.: Common-mode rejection in Martin-Puplett spectrometers for astronomical observations at millimeter wavelengths. Appl. Opt. 54, 9269D (2015)

    Article  Google Scholar 

  14. Masi, S., et al.: Kinetic inductance detectors for the OLIMPO experiment: in-flight operation and performance. JCAP 07, 003 (2019)

    Article  Google Scholar 

  15. Paiella, A., et al.: In-flight performance of the LEKIDs of the OLIMPO experiment. J. Low Temp. Phys. 199(1–2), 491–501 (2020)

    Article  Google Scholar 

  16. Volpe, A. et al.: “OLIMPO & LSPE/SWIPE missions: innovative instrumentations for astrophysical observations”, Proceedings of the XXV AIDAA International Congress of Aeronautics and Astronautics, Casa Editrice Persiani

  17. Faramarzi, F.B., Mauskopf, P., et al.: An on-chip superconducting kinetic inductance fourier transform spectrometer for millimeter-wave astronomy. JLTP 199, 867–874 (2020)

    Article  Google Scholar 

  18. Aiola, S., et al.: The large-scale polarization explorer (LSPE). Proc. SPIE 8446, 84467A (2012)

    Article  Google Scholar 

  19. Addamo, G., et al.: The large scale polarization explorer (LSPE) for CMB measurements: performance forecast. J Cosmol. Astropart. Phys. (2021). https://doi.org/10.1088/1475-7516/2021/08/008

    Article  Google Scholar 

  20. de Bernardis, P., et al.: SWIPE: a bolometric polarimeter for the large-scale polarization explorer. Proc. SPIE 8452, 84523F (2012)

    Article  Google Scholar 

  21. Columbro, F., et al.: SWIPE multi-mode pixel assembly design and beam pattern measurements at cryogenic temperature. J Low Temp. Phys. 199, 312–319 (2020). https://doi.org/10.1007/s10909-020-02396-4

    Article  Google Scholar 

  22. Columbro, F., et al.: A clamp and release system for superconducting magnetic bearings. Rev. Sci. Instrum. 125004, 89 (2018)

    Google Scholar 

  23. Columbro, F., et al.: A simple method to measure the temperature and levitation height of devices rotating at cryogenic temperatures. Rev. Sci. Instrum. 91, 045118 (2020)

    Article  Google Scholar 

  24. Planck collaboration: The planck mission. Astron. Astrophys. 536, A1 (2011)

    Article  Google Scholar 

  25. Masi, S., et al.: OLIMPO. Mem.S.A.It 79, 887 (2008)

    Google Scholar 

  26. Hazumi, M., et al.: LiteBIRD: JAXA’s new strategic L-class mission for all-sky surveys of cosmic microwave background polarization. Proc. of SPIE 11443, 114432F (2020)

    Google Scholar 

  27. A. Smirnov, et al.: Development status of the Millimetron Space Observatory, Proc. SPIE 11443, Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave, 114432H (2020).

  28. see http://cosmo.roma1.infn.it

  29. Kogut, A., et al.: The primordial inflation explorer (PIXIE). Proc. SPIE 9904, 99040W (2016)

    Article  Google Scholar 

  30. https://www.esa.int/Science_Exploration/Space_Science/Voyage_2050_sets_sail_ESA_chooses_future_science_mission_themes

Download references

Acknowledgements

The OLIMPO program has been supported by the Italian Space Agency grants (I-004–07-0 and 2016–4-H.0 and their integrations. The LSPE program has been supported by ASI (grant I-022–11-0 and its integrations) and by INFN (grant LSPE). The launch campaign from Svalbard was supported by ASI (grant 2018–1-M.O) and partially supported by the RSF (grant #19–19-00,499).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Volpe.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volpe, A., Albano, M., Ade, P.A.R. et al. Science and Innovation with Stratospheric Balloons: The Olimpo & Lspe/Swipe Projects. Aerotec. Missili Spaz. 102, 139–147 (2023). https://doi.org/10.1007/s42496-023-00149-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42496-023-00149-6

Keywords

Navigation