Skip to main content
Log in

In-Flight Performance of the LEKIDs of the OLIMPO Experiment

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We describe the in-flight performance of the horn-coupled lumped element kinetic inductance detector arrays of the balloon-borne OLIMPO experiment. These arrays have been designed to match the spectral bands of OLIMPO: 150, 250, 350, and \(460\,\hbox {GHz}\), and they have been operated at \(0.3\,\hbox {K}\) and at an altitude of \({37.8}\,\hbox {km}\) during the stratospheric flight of the OLIMPO payload, in Summer 2018. During the first hours of flight, we tuned the detectors and verified their large dynamics under the radiative background variations due to elevation increase of the telescope and to the insertion of the plug-in room-temperature differential Fourier transform spectrometer into the optical chain. We have found that the detector noise equivalent powers are close to be photon noise limited and lower than those measured on the ground. Moreover, the data contamination due to primary cosmic rays hitting the arrays is less than 3% for all the pixels of all the arrays and less than 1% for most of the pixels. These results can be considered the first step of KID technology validation in a representative space environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Delabrouille et al., (CORE collaboration). J. Cosmol. Astropart. Phys. 04, 014 (2018). https://doi.org/10.1088/1475-7516/2018/04/014

  2. P.K. Day et al., Nature 425, 817 (2003). https://doi.org/10.1038/nature02037

    Article  ADS  Google Scholar 

  3. S. Doyle et al., J. Low Temp. Phys. 151, 530 (2008). https://doi.org/10.1007/s10909-007-9685-2

    Article  ADS  Google Scholar 

  4. M. Calvo et al., Proc. SPIE 8452, 845203 (2012). https://doi.org/10.1117/12.927044

    Article  Google Scholar 

  5. R. Adam et al., Astron. Astrophys. 609, A115 (2018). https://doi.org/10.1051/0004-6361/201731503

    Article  Google Scholar 

  6. A. Coppolecchia et al., New Horizons Obs. Cosmol. (2013). https://doi.org/10.3254/978-1-61499-476-3-257

    Article  Google Scholar 

  7. P. de Bernardis et al., (CORE collaboration). J. Cosmol. Astropart. Phys. 04, 015 (2018). https://doi.org/10.1088/1475-7516/2018/04/015

  8. F. Finelli et al., (CORE collaboration). J. Cosmol. Astropart. Phys. 04, 016 (2018). https://doi.org/10.1088/1475-7516/2018/04/016

  9. E. Di Valentino et al., (CORE collaboration). J. Cosmol. Astropart. Phys. 04, 017 (2018). https://doi.org/10.1088/1475-7516/2018/04/017

  10. A. Challinor et al., (CORE collaboration). J. Cosmol. Astropart. Phys. 04, 018 (2018). https://doi.org/10.1088/1475-7516/2018/04/018

  11. J.-B. Melin et al., (CORE collaboration). J. Cosmol. Astropart. Phys. 04, 019 (2018). https://doi.org/10.1088/1475-7516/2018/04/019

  12. G. De Zotti et al., (CORE collaboration). J. Cosmol. Astropart. Phys. 04, 020 (2018). https://doi.org/10.1088/1475-7516/2018/04/020

  13. C. Burigana et al., (CORE collaboration). J. Cosmol. Astropart. Phys. 04, 021 (2018). https://doi.org/10.1088/1475-7516/2018/04/021

  14. P. Natoli et al., (CORE collaboration). J. Cosmol. Astropart. Phys. 04, 022 (2018). https://doi.org/10.1088/1475-7516/2018/04/022

  15. M. Remazeilles et al., (CORE collaboration). J. Cosmol. Astropart. Phys. 04, 023 (2018). https://doi.org/10.1088/1475-7516/2018/04/023

  16. A. Monfardini et al., Proc. SPIE 9914, 99140N (2016). https://doi.org/10.1117/12.2231758

    Article  Google Scholar 

  17. J.J.A. Baselmans et al., Astron. Astrophys. 601, A89 (2017). https://doi.org/10.1051/0004-6361/201629653

    Article  Google Scholar 

  18. K. Karatsu et al., Appl. Phys. Lett. 114, 032601 (2019). https://doi.org/10.1063/1.5052419

    Article  ADS  Google Scholar 

  19. Y.B. Zeldovich, R.A. Sunyaev, Astrophys. Space Sci. 7, 3 (1970). https://doi.org/10.1007/BF00653471

    Article  ADS  Google Scholar 

  20. A. Schillaci et al., Astron. Astrophys. 565, A125 (2014). https://doi.org/10.1051/0004-6361/201423631

    Article  Google Scholar 

  21. A. Coppolecchia et al., to be submitted (2019)

  22. P. de Bernardis et al., Astron. Astrophys. 538, A86 (2012). https://doi.org/10.1051/0004-6361/201118062

    Article  Google Scholar 

  23. A. Paiella et al., in 2017 16th International Superconductive Electronics Conference (ISEC)1, (2017). https://doi.org/10.1109/ISEC.2017.8314223

  24. A. Paiella et al., J. Cosmol. Astropart. Phys. 01, 039 (2019). https://doi.org/10.1088/1475-7516/2019/01/039

    Article  ADS  Google Scholar 

  25. https://www.ansys.com/it-it/products/electronics/ansys-hfss

  26. A. Paiella et al., J. Low Temp. Phys. 184, 97 (2016). https://doi.org/10.1007/s10909-015-1470-z

    Article  ADS  Google Scholar 

  27. A. Paiella et al., J. Phys. Conf. Ser. 1182, 012005 (2019). https://doi.org/10.1088/1742-6596/1182/1/012005

    Article  Google Scholar 

  28. O. Noroozian et al., AIP Conf. Proc. 1185, 148 (2009). https://doi.org/10.1063/1.3292302

    Article  ADS  Google Scholar 

  29. http://www.sonnetsoftware.com/

  30. S. Gordon et al., J. Astr. Inst. 05, 1641003 (2016). https://doi.org/10.1142/S2251171716410038

    Article  Google Scholar 

  31. S. Masi et al., EPJ Web Conf. 209, 01046 (2019). https://doi.org/10.1051/epjconf/201920901046

    Article  Google Scholar 

  32. S. Masi et al., J. Cosmol. Astropart. Phys. 07, 003 (2019). https://doi.org/10.1088/1475-7516/2019/07/003

    Article  ADS  Google Scholar 

  33. P. Abbon et al., Nucl. Instrum. Methods A 575, 412 (2007). https://doi.org/10.1016/j.nima.2007.02.094

    Article  ADS  Google Scholar 

  34. S. Masi et al., Astron. Astrophys. 519, A24 (2010). https://doi.org/10.1051/0004-6361/201014065

    Article  Google Scholar 

Download references

Acknowledgements

This activity has been supported by the Italian Space Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Paiella.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paiella, A., Ade, P.A.R., Battistelli, E.S. et al. In-Flight Performance of the LEKIDs of the OLIMPO Experiment. J Low Temp Phys 199, 491–501 (2020). https://doi.org/10.1007/s10909-020-02372-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02372-y

Keywords

Navigation