Skip to main content
Log in

SWIPE Multi-mode Pixel Assembly Design and Beam Pattern Measurements at Cryogenic Temperature

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper, we present beam pattern tests performed on the SWIPE multi-mode bolometric detector pixel assembly. A 20-mm-aperture horn is coupled to a large detector absorber (10 mm diameter) with a TES sensor located on the side. The pixel assembly has been tested at the bolometer base temperature of 340 mK, inside a custom cryogenic test bed, looking at a Gunn oscillator (128 GHz) located in the far field. We developed a custom cryogenic neoprene absorber, in addition to the stack of standard metal meshes low-pass filters, to reduce the background on the detector at a level similar to the one expected in flight, allowing to measure the main beam of the pixel assembly. The measured FWHM is 21\(^{\circ }\), slightly narrower than the expected one (24\(^{\circ }\)), due to vignetting produced by the filters stack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.shicryogenics.com/products/pulse-tube-cryocoolers/.

References

  1. BICEP2 Collaboration, Keck Array Collaboration, and SPIDER Collaboration. Astrophys. J. 812, 176 (2015). https://doi.org/10.1088/0004-637X/812/2/176

  2. SPT-3G Collaboration, J. Low Temp. Phys., 193, 547, (2018). https://doi.org/10.1007/s10909-018-1965-5

  3. A. Paiella, A. Coppolecchia, L. Lamagna, P.A.R. Ade, E.S. Battistelli, M.G. Castellano, I. Colantoni, F. Columbro, G. D’Alessandro, P. de Bernardis, S. Gordon, S. Masi, P. Mauskopf, G. Pettinari, F. Piacentini, G. Pisano, G. Presta, C. Tucker, J. Cosmol. Astropart. Phys. 1, 39 (2019). https://doi.org/10.1088/1475-7516/2019/01/039

    Article  ADS  Google Scholar 

  4. S. Masi, P. de Bernardis, A. Paiella, F. Piacentini, L. Lamagna, A. Coppolecchia, P.A.R. Ade, E.S. Battistelli, M.G. Castellano, I. Colantoni, F. Columbro, G. D’Alessandro, M. De Petris, S. Gordon, C. Magneville, P. Mauskopf, G. Pettinari, G. Pisano, G. Polenta, G. Presta, E. Tommasi, C. Tucker, V. Vdovin, A. Volpe, D. Yvon, J. Cosmol. Astropart. Phys. 7, 3 (2019). https://doi.org/10.1088/1475-7516/2019/07/003

    Article  ADS  Google Scholar 

  5. H. McCarrick, G. Jones, B.R. Johnson, M.H. Abitbol, P.A.R. Ade, S. Bryan, P. Day, T. Essinger-Hileman, D. Flanigan, H.G. Leduc, M. Limon, P. Mauskopf, A. Miller, C. Tucker, Astron. Astrophys. 610, A45 (2018). https://doi.org/10.1051/0004-6361/201732044

    Article  ADS  Google Scholar 

  6. Y. Sekimoto, and LiteBIRD Collaboration. Proc. SPIE 10698, 106981Y (2018). https://doi.org/10.1117/12.2313432

  7. CMB-S4 Collaboration, arXiv e-prints, (2016)

  8. L. Lamagna, and LSPE Collaboration, J. Low Temp.Phys, This Special Issue (YEAR)

  9. B.R. Johnson, F. Columbro, D. Araujo, M. Limon, B. Smiley, G. Jones, B. Reichborn-Kjennerud, A. Miller, S. Gupta, Rev. Sci. Instrum. 88, 105102 (2017). https://doi.org/10.1063/1.4990884

    Article  ADS  Google Scholar 

  10. F. Columbro, P. de Bernardis, S. Masi, Rev. Sci. Instrum. 89, 125004 (2018). https://doi.org/10.1063/1.5035332

    Article  Google Scholar 

  11. F. Columbro, E.S. Battistelli, A. Coppolecchia, G. D’Alessandro, P. de Bernardis, L. Lamagna, S. Masi, L. Pagano, A. Paiella, F. Piacentini, G. Presta, Astron. Nachr. 340, 83 (2019). https://doi.org/10.1002/asna.201913566

    Article  ADS  Google Scholar 

  12. S. Legg, L. Lamagna, G. Coppi, P. de Bernardis, G. Giuliani, R. Gualtieri, T. Marchetti, S. Masi, G. Pisano, B. Maffei, Proc. SPIE 9914, 991414 (2016). https://doi.org/10.1117/12.2232400

    Article  Google Scholar 

  13. B. Siri, M. Biasotti, L. Ferrari Barusso, G. Gallucci, F. Gatti, M. Rigano, J. Low Temp.Phys, This Special Issue (YEAR)

  14. R. Gualtieri, E.S. Battistelli, A. Cruciani, P. de Bernardis, M. Biasotti, D. Corsini, F. Gatti, L. Lamagna, S. Masi, J. Low Temp. Phys. 184, 527 (2016). https://doi.org/10.1007/s10909-015-1436-1

    Article  ADS  Google Scholar 

  15. M. Halpern, H.P. Gush, E. Wishnow, V. de Cosmo, Appl. Opt. 25, 565 (1986). https://doi.org/10.1364/AO.25.000565

    Article  ADS  Google Scholar 

  16. R.P. Welty, J.M. Martinis, IEEE Trans. Magn. 27, 2924 (1991). https://doi.org/10.1109/20.133821

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Columbro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Columbro, F., Madonia, P.G., Lamagna, L. et al. SWIPE Multi-mode Pixel Assembly Design and Beam Pattern Measurements at Cryogenic Temperature. J Low Temp Phys 199, 312–319 (2020). https://doi.org/10.1007/s10909-020-02396-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02396-4

Keywords

Navigation