Skip to main content

Advertisement

Log in

Non-Arthroplasty Surgical Treatments for Knee Osteoarthritis and Cartilage Damage: a 10 Year Update

  • Review
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

Osteoarthritis is a chronic, degenerative disease leading to pain and decreased functionality in millions of people in the United States every year. The knee joint is the most commonly affected joint and has a direct impact on patients’ mobility and ability to perform activities of daily living. Osteoarthritis is treated conservatively with a variety of modalities, including anti-inflammatories, physical therapy, corticosteroid, viscosupplementation, and platelet-rich plasma injections. The gold standard surgical treatment for eligible patients with severe osteoarthritis is total or unicompartmental knee arthroplasty. However, many patients may not be candidates for, or may opt to delay, knee replacement but still require surgery. In these cases, patients may receive lavage and debridement, microfracture, osteochondral allograft or autograft transplantation, autologous chondrocyte implantation, or high tibial osteotomy. This review will provide an overview of literature surrounding these non-arthroplasty, surgical treatment options for treating cartilage defects and knee osteoarthritis. In addition to being evaluated based on efficacy and discussing the ideal patient populations for each procedure, these surgeries will be compared in terms of cost-effectiveness and impact on quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data collected through pubmed and is publicly available.

Code Availability

Not Applicable.

Abbreviations

OA:

Osteoarthritis

ROM:

Range of Motion

MRI:

Magnetic Resonance Imaging

PT:

Physical Therapy

NSAIDS:

Non-steroidal Anti-inflammatory Drugs

HA:

Hyaluronic Acid

PRP:

Plasma-rich Platelet

VAS:

Visual Analog Scale

TKA:

Total Knee Arthroplasty

UKA:

Unicompartmental Knee Arthroplasty

QALY:

Quality-adjusted Life Years

QoL:

Quality of Life

ADL:

Activities of Daily Living

SF:

Short Form

KOOS:

Knee Injury and Osteoarthritis Outcome Score

NICE:

National Institute of Health and Care Excellence

KA:

Knee Arthroscopy

ACI:

Autologous Chondrocyte Implantation

RCT:

Randomized Controlled Trial

MACI:

Matrix-applied Autologous Chondrocyte Implantation

IKDC:

International Knee Documentation Committee

ACI-1:

First Generation Autologous Chondrocyte Implantation

OAT:

Osteochondral Autograft Transplantation

OCA:

Osteochondral Allograft Transplantation

ICRS:

International Cartilage Repair Society

MCMS:

Modified Coleman Methodology Score

ACI-2:

Next Generation Autologous Chondrocyte Implantation

HTO:

High Tibial Osteotomy

References

  1. Glyn-Jones S, Palmer AJR, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarthritis. Lancet. 2015;386:376–87. https://doi.org/10.1016/S0140-6736(14)60802-3.

    Article  CAS  PubMed  Google Scholar 

  2. Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;12:580–92. https://doi.org/10.1038/nrrheum.2016.136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Charlesworth J, Fitzpatrick J, Perera NKP, Orchard J. Osteoarthritis- a systematic review of long-term safety implications for osteoarthritis of the knee. BMC Musculoskelet Disord. 2019;20:151. https://doi.org/10.1186/s12891-019-2525-0.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Su X, Li C, Liao W, Liu J, Zhang H, Li J, et al. Comparison of arthroscopic and conservative treatments for knee osteoarthritis: a 5-year retrospective comparative study. Arthrosc J Arthrosc Relat Surg. 2018;34:652–9. https://doi.org/10.1016/j.arthro.2017.09.023.

    Article  Google Scholar 

  5. Ferreira R, Duarte J, Gonçalves R. Non-pharmacological and non-surgical interventions to manage patients with knee osteoarthritis: an umbrella review. Acta Reumatol Port. 2018;43:182–200.

    PubMed  Google Scholar 

  6. Deyle GD, Allen CS, Allison SC, Gill NW, Hando BR, Petersen EJ, et al. Physical therapy versus glucocorticoid injection for osteoarthritis of the knee. N Engl J Med. 2020;382:1420–9. https://doi.org/10.1056/NEJMoa1905877.

    Article  CAS  PubMed  Google Scholar 

  7. Altman R, Hackel J, Niazi F, Shaw P, Nicholls M. Efficacy and safety of repeated courses of hyaluronic acid injections for knee osteoarthritis: a systematic review. Semin Arthritis Rheum. 2018;48:168–75. https://doi.org/10.1016/j.semarthrit.2018.01.009.

    Article  CAS  PubMed  Google Scholar 

  8. Jones IA, Togashi R, Wilson ML, Heckmann N, Vangsness CT. Intra-articular treatment options for knee osteoarthritis. Nat Rev Rheumatol. 2019;15:77–90. https://doi.org/10.1038/s41584-018-0123-4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. He W-W, Kuang M-J, Zhao J, Sun L, Lu B, Wang Y, et al. Efficacy and safety of intraarticular hyaluronic acid and corticosteroid for knee osteoarthritis: a meta-analysis. Int J Surg Lond Engl. 2017;39:95–103. https://doi.org/10.1016/j.ijsu.2017.01.087.

    Article  Google Scholar 

  10. Zhao J, Huang H, Liang G, Zeng L, Yang W, Liu J. Effects and safety of the combination of platelet-rich plasma (PRP) and hyaluronic acid (HA) in the treatment of knee osteoarthritis: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2020;21:224. https://doi.org/10.1186/s12891-020-03262-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu W, Xu P, Huang G, Liu L. Clinical therapy of hyaluronic acid combined with platelet-rich plasma for the treatment of knee osteoarthritis. Exp Ther Med. 2018;16:2119–25. https://doi.org/10.3892/etm.2018.6412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Belk JW, Kraeutler MJ, Houck DA, Goodrich JA, Dragoo JL, McCarty EC. Platelet-rich plasma versus hyaluronic acid for knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Am J Sports Med. 2021;49:249–60. https://doi.org/10.1177/0363546520909397.

    Article  PubMed  Google Scholar 

  13. Zhang H, Wang C, Li H, Huang Y, Li Z. Intra-articular platelet-rich plasma versus hyaluronic acid in the treatment of knee osteoarthritis: a meta-analysis. Drug Des Devel Ther. 2018;12:445–53. https://doi.org/10.2147/DDDT.S156724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tan J, Chen H, Zhao L, Huang W. Platelet-rich plasma versus hyaluronic acid in the treatment of knee osteoarthritis: a meta-analysis of 26 randomized controlled trials. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2021;37:309–25. https://doi.org/10.1016/j.arthro.2020.07.011.

    Article  Google Scholar 

  15. Chen Z, Wang C, You D, Zhao S, Zhu Z, Xu M. Platelet-rich plasma versus hyaluronic acid in the treatment of knee osteoarthritis. Medicine (Baltimore) 2020;99:e19388. https://doi.org/10.1097/MD.0000000000019388.

  16. Di Martino A, Di Matteo B, Papio T, Tentoni F, Selleri F, Cenacchi A, et al. Platelet-rich plasma versus hyaluronic acid injections for the treatment of knee osteoarthritis: results at 5 years of a double-blind, randomized controlled trial. Am J Sports Med. 2019;47:347–54. https://doi.org/10.1177/0363546518814532.

    Article  PubMed  Google Scholar 

  17. Song Y, Zhang J, Xu H, Lin Z, Chang H, Liu W, et al. Mesenchymal stem cells in knee osteoarthritis treatment: a systematic review and meta-analysis. J Orthop Transl. 2020;24:121–30. https://doi.org/10.1016/j.jot.2020.03.015.

    Article  Google Scholar 

  18. Kim YG, Choi J, Kim K. Mesenchymal stem cell-derived exosomes for effective cartilage tissue repair and treatment of osteoarthritis. Biotechnol J. 2020;15:2000082. https://doi.org/10.1002/biot.202000082.

    Article  CAS  Google Scholar 

  19. Wang J, Zhou L, Zhang Y, Huang L, Shi Q. Mesenchymal stem cells - a promising strategy for treating knee osteoarthritis: a meta-analysis. Bone Jt Res. 2020;9:719–28. https://doi.org/10.1302/2046-3758.910.BJR-2020-0031.R3.

    Article  Google Scholar 

  20. Freitag J, Bates D, Wickham J, Shah K, Huguenin L, Tenen A, et al. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: a randomized controlled trial. Regen Med. 2019;14:213–30. https://doi.org/10.2217/rme-2018-0161.

    Article  CAS  PubMed  Google Scholar 

  21. Migliorini F, Berton A, Salvatore G, Candela V, Khan W, Longo UG, et al. Autologous chondrocyte implantation and mesenchymal stem cells for the treatments of chondral defects of the knee- a systematic review. Curr Stem Cell Res Ther. 2020;15:547–56. https://doi.org/10.2174/1574888X15666200221122834.

    Article  CAS  PubMed  Google Scholar 

  22. Cao Y, Ma Y, Tao Y, Lin W, Wang P. Intra-articular drug delivery for osteoarthritis treatment. Pharmaceutics. 2021;13:2166. https://doi.org/10.3390/pharmaceutics13122166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gambaro FM, Ummarino A, Torres Andón F, Ronzoni F, Di Matteo B, Kon E. Drug delivery systems for the treatment of knee osteoarthritis: a systematic review of in vivo studies. Int J Mol Sci. 2021;22:9137. https://doi.org/10.3390/ijms22179137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Joshi MV, Phansopkar P. Superior replacement of medicinal gel with ayurvedic nanogel as a coupling medium for electrotherapeutic treatment of osteoarthritis: a review article. Cureus n.d.;14:e28658. https://doi.org/10.7759/cureus.28658.

  25. Shin CS, Lee JH. Arthroscopic treatment for osteoarthritic knee. Knee Surg Relat Res. 2012;24:187–92. https://doi.org/10.5792/ksrr.2012.24.4.187.

    Article  PubMed  PubMed Central  Google Scholar 

  26. National Clinical Guideline Centre (UK). Osteoarthritis: Care and management in adults. London: National Institute for Health and Care Excellence (UK). (NICE Clinical Guidelines, No. 177.) 8, Non-pharmacological management of osteoarthritis. 2014. https://www.ncbi.nlm.nih.gov/books/NBK333064/

  27. Brignardello-Petersen R, Guyatt GH, Buchbinder R, Poolman RW, Schandelmaier S, Chang Y, et al. Knee arthroscopy versus conservative management in patients with degenerative knee disease: a systematic review. BMJ Open 2017;7:e016114. https://doi.org/10.1136/bmjopen-2017-016114.

  28. Monk P, Garfjeld Roberts P, Palmer AJR, Bayliss L, Mafi R, Beard D, et al. The urgent need for evidence in arthroscopic meniscal surgery: a systematic review of the evidence for operative management of meniscal tears. Am J Sports Med. 2017;45:965–73. https://doi.org/10.1177/0363546516650180.

    Article  PubMed  Google Scholar 

  29. Moseley JB, O’Malley K, Petersen NJ, Menke TJ, Brody BA, Kuykendall DH, et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med. 2002;347:81–8. https://doi.org/10.1056/NEJMoa013259.

    Article  PubMed  Google Scholar 

  30. Sonesson S, Kvist J, Yakob J, Hedevik H, Gauffin H. Knee arthroscopic surgery in middle-aged patients with meniscal symptoms: a 5-year follow-up of a prospective, randomized study. Orthop J Sports Med. 2020;8:2325967119893920. https://doi.org/10.1177/2325967119893920.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Katz JN, Brophy RH, Chaisson CE, de Chaves L, Cole BJ, Dahm DL, et al. Surgery versus physical therapy for a meniscal tear and osteoarthritis. N Engl J Med. 2013;368:1675–84. https://doi.org/10.1056/NEJMoa1301408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Herrlin SV, Wange PO, Lapidus G, Hållander M, Werner S, Weidenhielm L. Is arthroscopic surgery beneficial in treating non-traumatic, degenerative medial meniscal tears? A five year follow-up. Knee Surg Sports Traumatol Arthrosc Off J ESSKA. 2013;21:358–64. https://doi.org/10.1007/s00167-012-1960-3.

    Article  Google Scholar 

  33. Kirkley A, Birmingham TB, Litchfield RB, Giffin JR, Willits KR, Wong CJ, et al. A randomized trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med. 2008;359:1097–107. https://doi.org/10.1056/NEJMoa0708333.

    Article  CAS  PubMed  Google Scholar 

  34. Hutt JRB, Craik J, Phadnis J, Cobb AG. Arthroscopy for mechanical symptoms in osteoarthritis: a cost-effective procedure. Knee Surg Sports Traumatol Arthrosc Off J ESSKA. 2015;23:3545–9. https://doi.org/10.1007/s00167-014-3220-1.

    Article  Google Scholar 

  35. Rongen JJ, Govers TM, Buma P, Rovers MM, Hannink G. Arthroscopic meniscectomy for degenerative meniscal tears reduces knee pain but is not cost-effective in a routine health care setting: a multi-center longitudinal observational study using data from the osteoarthritis initiative. Osteoarthritis Cartil. 2018;26:184–94. https://doi.org/10.1016/j.joca.2017.02.805.

    Article  CAS  Google Scholar 

  36. Marsh J, Birmingham TB, Giffin JR, Isaranuwatchai W, Hoch JS, Litchfield R, et al. Cost-effectiveness analysis of arthroscopic surgery compared to non-operative management for osteoarthritis of the knee. Osteoarthritis Cartil. 2015;23:A31. https://doi.org/10.1016/j.joca.2015.02.073.

    Article  Google Scholar 

  37. Buldu MT, Marsh JL, Arbuthnot J. Mechanical symptoms of osteoarthritis in the knee and arthroscopy. J Knee Surg 2015:396–402. https://doi.org/10.1055/s-0035-1564592.

  38. Camus T, Han J, Osmani F, Scott N, Long WJ. Incidence and predictors of total knee arthroplasty following knee arthroscopy. J Orthop. 2018;15:32–5. https://doi.org/10.1016/j.jor.2017.11.006.

    Article  PubMed  Google Scholar 

  39. Erggelet C, Vavken P. Microfracture for the treatment of cartilage defects in the knee joint – a golden standard? J Clin Orthop Trauma. 2016;7:145–52. https://doi.org/10.1016/j.jcot.2016.06.015.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Camp CL, Stuart MJ, Krych AJ. Current concepts of articular cartilage restoration techniques in the knee. Sports Health. 2014;6:265–73. https://doi.org/10.1177/1941738113508917.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Orth P, Gao L, Madry H. Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature. Knee Surg Sports Traumatol Arthrosc. 2020;28:670–706. https://doi.org/10.1007/s00167-019-05359-9.

    Article  PubMed  Google Scholar 

  42. Gou G-H, Tseng F-J, Wang S-H, Chen P-J, Shyu J-F, Weng C-F, et al. Autologous chondrocyte implantation versus microfracture in the knee: a meta-analysis and systematic review. Arthroscopy. 2020;36:289–303. https://doi.org/10.1016/j.arthro.2019.06.033.

    Article  PubMed  Google Scholar 

  43. Brittberg M, Recker D, Ilgenfritz J, Saris DBF, SUMMIT Extension Study Group. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. Am J Sports Med 2018;46:1343–51. https://doi.org/10.1177/0363546518756976.

  44. Ibarra C, Villalobos E, Madrazo-Ibarra A, Velasquillo C, Martinez-Lopez V, Izaguirre A, et al. Arthroscopic matrix-assisted autologous chondrocyte transplantation versus microfracture: a 6-year follow-up of a prospective randomized trial. Am J Sports Med. 2021;49:2165–76. https://doi.org/10.1177/03635465211010487.

    Article  PubMed  Google Scholar 

  45. Aae TF, Randsborg P-H, Lurås H, Årøen A, Lian ØB. Microfracture is more cost-effective than autologous chondrocyte implantation: a review of level 1 and level 2 studies with 5 year follow-up. Knee Surg Sports Traumatol Arthrosc. 2018;26:1044–52. https://doi.org/10.1007/s00167-017-4802-5.

    Article  PubMed  Google Scholar 

  46. Pareek A, Reardon PJ, Macalena JA, Levy BA, Stuart MJ, Williams RJ, et al. Osteochondral autograft transfer versus microfracture in the knee: a meta-analysis of prospective comparative studies at midterm. Arthrosc J Arthrosc Relat Surg. 2016;32:2118–30. https://doi.org/10.1016/j.arthro.2016.05.038.

    Article  Google Scholar 

  47. Ossendorff R, Franke K, Erdle B, Uhl M, Südkamp NP, Salzmann GM. Clinical and radiographical ten years long-term outcome of microfracture vs. autologous chondrocyte implantation: a matched-pair analysis. Int Orthop 2019;43:553–9. https://doi.org/10.1007/s00264-018-4025-5.

  48. Kraeutler MJ, Belk JW, Purcell JM, McCarty EC. Microfracture versus autologous chondrocyte implantation for articular cartilage lesions in the knee: a systematic review of 5-year outcomes. Am J Sports Med. 2018;46:995–9. https://doi.org/10.1177/0363546517701912.

    Article  PubMed  Google Scholar 

  49. Kim J-H, Heo J-W, Lee D-H. Clinical and radiological outcomes after autologous matrix-induced chondrogenesis versus microfracture of the knee: a systematic review and meta-analysis with a minimum 2-year follow-up. Orthop J Sports Med. 2020;8:2325967120959280. https://doi.org/10.1177/2325967120959280.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Na Y, Shi Y, Liu W, Jia Y, Kong L, Zhang T, et al. Is implantation of autologous chondrocytes superior to microfracture for articular-cartilage defects of the knee? A systematic review of 5-year follow-up data. Int J Surg Lond Engl. 2019;68:56–62. https://doi.org/10.1016/j.ijsu.2019.06.007.

    Article  Google Scholar 

  51. Schrock JB, Kraeutler MJ, Houck DA, McQueen MB, McCarty EC. A cost-effectiveness analysis of surgical treatment modalities for chondral lesions of the knee: microfracture, osteochondral autograft transplantation, and autologous chondrocyte implantation. Orthop J Sports Med. 2017;5:2325967117704634. https://doi.org/10.1177/2325967117704634.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Niemeyer P, Schubert T, Grebe M, Hoburg A. Treatment costs of matrix-associated autologous chondrocyte implantation compared with microfracture: results of a matched-pair claims data analysis on the treatment of cartilage knee defects in germany. Orthop J Sports Med. 2019;7:2325967119886583. https://doi.org/10.1177/2325967119886583.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Elvidge J, Bullement A, Hatswell AJ. Cost effectiveness of characterised chondrocyte implantation for treatment of cartilage defects of the knee in the UK. Pharmacoeconomics. 2016;34:1145–59. https://doi.org/10.1007/s40273-016-0423-y.

    Article  PubMed  Google Scholar 

  54. Clar C, Cummins E, McIntyre L, Thomas S, Lamb J, Bain L, et al. Clinical and cost-effectiveness of autologous chondrocyte implantation for cartilage defects in knee joints: systematic review and economic evaluation. NIHR Health Technol. Assess. Programme Exec. Summ., NIHR Journals Library; 2005.

  55. Abraamyan T, Johnson AJ, Wiedrick J, Crawford DC. Marrow stimulation has relatively inferior patient-reported outcomes in cartilage restoration surgery of the knee: a systematic review and meta-analysis of randomized controlled trials. Am J Sports Med. 2022;50:858–66. https://doi.org/10.1177/03635465211003595.

    Article  PubMed  Google Scholar 

  56. Hoburg A, Niemeyer P, Laute V, Zinser W, Becher C, Kolombe T, et al. Sustained superiority in KOOS subscores after matrix-associated chondrocyte implantation using spheroids compared to microfracture. Knee Surg Sports Traumatol Arthrosc Off J ESSKA. 2022. https://doi.org/10.1007/s00167-022-07194-x.

    Article  Google Scholar 

  57. Abram SGF, Hopewell S, Monk AP, Bayliss LE, Beard DJ, Price AJ. Arthroscopic partial meniscectomy for meniscal tears of the knee: a systematic review and meta-analysis. Br J Sports Med. 2020;54:652–63. https://doi.org/10.1136/bjsports-2018-100223.

    Article  PubMed  Google Scholar 

  58. Pisanu G, Cottino U, Rosso F, Blonna D, Marmotti AG, Bertolo C, et al. Large osteochondral allografts of the knee: surgical technique and indications. Joints. 2018;6:42–53. https://doi.org/10.1055/s-0038-1636925.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dall’Oca C, Cengarle M, Costanzo A, Giannini N, Vacchiano A, Magnan B. Current concepts in treatment of early knee osteoarthritis and osteochondral lesions; the role of biological augmentations. Acta Bio-Medica Atenei Parm 2017;88:5–10. https://doi.org/10.23750/abm.v88i4-S.6788.

  60. Haikal M, Issac RT, Snow M. Osteochondral allograft transplantation of the knee: a review of indications, techniques, outcome and how to promote biology. Orthop Trauma. 2023. https://doi.org/10.1016/j.mporth.2023.03.004.

    Article  Google Scholar 

  61. Richter DL, Schenck RC, Wascher DC, Treme G. Knee articular cartilage repair and restoration techniques: a review of the literature. Sports Health. 2016;8:153–60. https://doi.org/10.1177/1941738115611350.

    Article  PubMed  Google Scholar 

  62. Han Q-X, Tong Y, Zhang L, Sun J, Ma J, Liu X, et al. Comparative efficacy of osteochondral autologous transplantation and microfracture in the knee: an updated meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg. 2023;143:317–28. https://doi.org/10.1007/s00402-021-04075-9.

    Article  PubMed  Google Scholar 

  63. Haien Z, Jiachang W, Qiang L, Yufeng M, Zhenwei J. Osteochondral autologous transplantation compared to microfracture for treating osteochondral defect: an updated meta-analysis of randomized controlled trials. J Knee Surg. 2018;31:341–7. https://doi.org/10.1055/s-0037-1603798.

    Article  PubMed  Google Scholar 

  64. Hinckel BB, Thomas D, Vellios EE, Hancock KJ, Calcei JG, Sherman SL, et al. Algorithm for treatment of focal cartilage defects of the knee: classic and new procedures. Cartilage. 2021;13:473S-495S. https://doi.org/10.1177/1947603521993219.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Familiari F, Cinque ME, Chahla J, Godin JA, Olesen ML, Moatshe G, et al. Clinical outcomes and failure rates of osteochondral allograft transplantation in the knee: a systematic review. Am J Sports Med. 2018;46:3541–9. https://doi.org/10.1177/0363546517732531.

    Article  PubMed  Google Scholar 

  66. Crawford ZT, Schumaier AP, Glogovac G, Grawe BM. Return to sport and sports-specific outcomes after osteochondral allograft transplantation in the knee: a systematic review of studies with at least 2 years’ mean follow-up. Arthrosc J Arthrosc Relat Surg. 2019;35:1880–9. https://doi.org/10.1016/j.arthro.2018.11.064.

    Article  Google Scholar 

  67. Cavendish PA, Everhart JS, Peters NJ, Sommerfeldt MF, Flanigan DC. Osteochondral allograft transplantation for knee cartilage and osteochondral defects: a review of indications, technique, rehabilitation, and outcomes. JBJS Rev 2019;7:e7. https://doi.org/10.2106/JBJS.RVW.18.00123.

  68. Sochacki KR, Varshneya K, Calcei JG, Safran MR, Abrams GD, Donahue J, et al. Comparison of autologous chondrocyte implantation and osteochondral allograft transplantation of the knee in a large insurance database: reoperation rate, complications, and cost analysis. Cartilage. 2021;13:1187S-1194S. https://doi.org/10.1177/1947603520967065.

    Article  PubMed  Google Scholar 

  69. Krych AJ, Pareek A, King AH, Johnson NR, Stuart MJ, Williams RJ. Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2017;25:3186–96. https://doi.org/10.1007/s00167-016-4262-3.

    Article  PubMed  Google Scholar 

  70. Mistry H, Metcalfe A, Smith N, Loveman E, Colquitt J, Royle P, et al. The cost-effectiveness of osteochondral allograft transplantation in the knee. Knee Surg Sports Traumatol Arthrosc. 2019;27:1739–53. https://doi.org/10.1007/s00167-019-05392-8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tírico LEP, McCauley JC, Pulido PA, Demange MK, Bugbee WD. Is Patient satisfaction associated with clinical outcomes after osteochondral allograft transplantation in the knee? Am J Sports Med. 2019;47:82–7. https://doi.org/10.1177/0363546518812420.

    Article  PubMed  Google Scholar 

  72. Krill M, Early N, Everhart JS, Flanigan DC. Autologous Chondrocyte Implantation (ACI) for knee cartilage defects: a review of indications, technique, and outcomes. JBJS Rev 2018;6:e5. https://doi.org/10.2106/JBJS.RVW.17.00078.

  73. Schuette HB, Kraeutler MJ, McCarty EC. Matrix-assisted autologous chondrocyte transplantation in the knee: a systematic review of mid- to long-term clinical outcomes. Orthop J Sports Med. 2017;5:2325967117709250. https://doi.org/10.1177/2325967117709250.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zamborsky R, Danisovic L. Surgical techniques for knee cartilage repair: an updated large-scale systematic review and network meta-analysis of randomized controlled trials. Arthroscopy. 2020;36:845–58. https://doi.org/10.1016/j.arthro.2019.11.096.

    Article  PubMed  Google Scholar 

  75. Cugat R, Samitier G, Vinagre G, Sava M, Alentorn-Geli E, García-Balletbó M, et al. Particulated Autologous Chondral−Platelet-Rich Plasma Matrix Implantation (PACI) for treatment of full-thickness cartilage osteochondral defects. Arthrosc Tech. 2021;10:e539–44. https://doi.org/10.1016/j.eats.2020.10.038.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Katz JN, Earp BE, Gomoll AH. Surgical management of osteoarthritis. Arthritis Care Res. 2010;62:1220–8. https://doi.org/10.1002/acr.20231.

    Article  Google Scholar 

  77. Liu X, Chen Z, Gao Y, Zhang J, Jin Z. High tibial osteotomy: review of techniques and biomechanics. J Healthc Eng 2019;2019:e8363128. https://doi.org/10.1155/2019/8363128.

  78. Capella M, Gennari E, Dolfin M, Saccia F. Indications and results of high tibial osteotomy. Annals of Joint. 2017;2. https://doi.org/10.21037/aoj.2017.06.06

  79. He M, Zhong X, Li Z, Shen K, Zeng W. Progress in the treatment of knee osteoarthritis with high tibial osteotomy: a systematic review. Syst Rev. 2021;10:56. https://doi.org/10.1186/s13643-021-01601-z.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cao Z, Mai X, Wang J, Feng E, Huang Y. Unicompartmental knee arthroplasty vs high tibial osteotomy for knee osteoarthritis: a systematic review and meta-analysis. J Arthroplasty. 2018;33:952–9. https://doi.org/10.1016/j.arth.2017.10.025.

    Article  PubMed  Google Scholar 

  81. Santoso MB, Wu L. Unicompartmental knee arthroplasty, is it superior to high tibial osteotomy in treating unicompartmental osteoarthritis? A meta-analysis and systemic review. J Orthop Surg. 2017;12:50. https://doi.org/10.1186/s13018-017-0552-9.

    Article  Google Scholar 

  82. Konopka JF, Gomoll AH, Thornhill TS, Katz JN, Losina E. The cost-effectiveness of surgical treatment of medial unicompartmental knee osteoarthritis in younger patients. J Bone Joint Surg Am. 2015;97:807–17. https://doi.org/10.2106/JBJS.N.00925.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Smith WB, Steinberg J, Scholtes S, Mcnamara IR. Medial compartment knee osteoarthritis: age-stratified cost-effectiveness of total knee arthroplasty, unicompartmental knee arthroplasty, and high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2017;25:924–33. https://doi.org/10.1007/s00167-015-3821-3.

    Article  PubMed  Google Scholar 

  84. Stan G, Orban H, Orban C. Cost effectiveness analysis of knee osteoarthritis treatment. Chir Buchar Rom. 1990;2015(110):368–74.

    Google Scholar 

  85. Haber DB, Logan CA, Murphy CP, Sanchez A, LaPrade RF, Provencher MT. Osteochondral allograft transplantation for the knee: post-operative rehabilitation. Int J Sports Phys Ther 2019;14:487–99. https://doi.org/10.26603/ijspt20190487.

  86. Frank RM, McCormick F, Rosas S, Amoo-Achampong K, Erickson B, Bach BR, et al. Reoperation rates after cartilage restoration procedures in the knee: analysis of a large US commercial database. Am J Orthop Belle Mead NJ 2018;47. https://doi.org/10.12788/ajo.2018.0040.

Download references

Author information

Authors and Affiliations

Authors

Contributions

SSSY: substantial contributions to conception and design, acquisition of information and data, drafting and editing the article, final approval of the version to be published.

AG: substantial contributions to conception and design, revising manuscript critically for important intellectual content, final approval of the version to be published.

SJ: substantial contributions to conception and design, revising manuscript critically for important intellectual content, final approval of the version to be published.

FF: substantial contributions to conception and design, revising manuscript critically for important intellectual content, final approval of the version to be published.

PM: substantial contributions to conception and design, revising manuscript critically for important intellectual content, final approval of the version to be published.

JLC: substantial contributions to conception and design, revising manuscript critically for important intellectual content, final approval of the version to be published.

Corresponding author

Correspondence to Sophia Sarang Shin Yin.

Ethics declarations

Ethics Approval

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Conflict of Interest

The authors report the following potential conflicts of interest or sources of funding: J.L.C. is an educational consultant for Arthrex and receives compensation for medical educational lectures and instruction only.

Competing Interests

Dr. James Chen is an educational consultant for Arthrex and receives compensation for medical educational lectures and instruction only. All other authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Surgery

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S.S.S., Guzman, A., Jenkins, S. et al. Non-Arthroplasty Surgical Treatments for Knee Osteoarthritis and Cartilage Damage: a 10 Year Update. SN Compr. Clin. Med. 5, 215 (2023). https://doi.org/10.1007/s42399-023-01554-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42399-023-01554-5

Keywords

Navigation