Skip to main content
Log in

Pd(II) and Pt(II) Mixed Ligand Complexes Containing 2,5-Dimercapto-1,3,4-Thiadizole and 1,2-Bis(diphenylphosphino)ethane Ligands, Synthesis, Characterization, Crystal Structure, Anticancer and Computational Studies

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

One pot reaction of K2MCl4 with two equivalents of 2,5-dimercapto-1,3,4-thiadiazole (dmtzsH2) and one equivalent of 1,2-bis(diphenylphosphino)ethane (dppe) in MeOH/CH2Cl2 mixed solvents resulted in the formation of [M(dmtzsH)2(dppe)], M = Pd 1 or Pt 2 in 49 and 77% yield respectively. The same products were obtained in 54 and 80% yield on using two equivalents of KOH in EtOH/CH2Cl2 mixed solvents. The prepared complexes were characterized by elemental analysis, magnetic susceptibility, molar conductance, UV–Visible, FT-IR, 1H, 31P-{1H} nmr spectroscopy and 1 by X-ray crystallography. The crystal structure of 1 reveal that the two dmtzsH ligands function as monodentate binding to palladium through the exocyclic sulfur atom in a thiolate form, whereas dppe binds in a bidentate chelate fashion. The two complexes 1 and 2 were evaluated for their anti-cancer activity using in vitro methods against the MCF-7 cell line, a type of Breast cancer cell. The results indicated that both complexes exhibit a promising anticancer effect, IC50 values of 55 µg/ml at a concentration of 500 µg/ml. The stability and molecular reactivity of the ligands and complexes have been demonstrated through the utilization of density functional theory (DFT) and Hirshfeld analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Scheme 1.
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Popovic Z, Soldin Z, Calogovic DM, Pavlovic G, Rajic M, Giester G (2002) Mercury(II) complexes with heterocyclic thiones-preparation and characterization of the 1:1 and 1:2 mercury(II) complexes with benzo-1,3-imidazole-2-thione. Eur J Inorg Chem 2002:171–180

    Article  Google Scholar 

  2. Fettouhi M, Wazeer MI, Isab AA (2007) Zinc halide complexes of imidazolidine-2-thione and its derivatives: X-ray structures, solid state, solution NMR and antimicrobial activity studies. J Coord Chem 60(4):369–377

    Article  CAS  Google Scholar 

  3. Al-Zamil NO, Al-Sadhan KA, Isab AA, Wazeer MI, Al-Arfaj AA (2007) Silver(I) complexes of imidazolidine-2-thione and triphenylphosphines: Solid-state, solution NMR and antimicrobial activity studies. Spectroscopy 21(1):61–67

    Article  CAS  Google Scholar 

  4. Mehra V, Bains AK, Hhundal G, Lobana TS (2017) Transformation of 1,3-imidazolidine-2-thione (SC3H6N2) in to (SC3H4N2-O-N2C3H4S)2- dianion chelated in [Pd{κ3-S, O, S-(SC3H4N2-O-N2C3H4S)}(PPh3)].CH3CN. J Chem Sci 129:359–363

    Article  CAS  Google Scholar 

  5. Al-Janabi AS, Al-Nassiry AI (2020) Synthesis, characterization and antibacterial studies of some of phenyl mercury(II) complexes of 1,3-benzothiazole-2-thione and phosphine or amines. Res J Chem Environ 24:90–97

    CAS  Google Scholar 

  6. Al-Janabi AS, Alheety MA, Al-Samrai OA, Shaaban S, Kibar B, Cacan E (2020) Anti-cancer and anti-fungal evaluation of novel palladium (II) 1-phenyl-1H-tetrazol-5-thiol complexes. Inorg Chem Commun 121:1–7

    Article  Google Scholar 

  7. Fatahian-Nezhad M, Alizadeh R, Mohammadi SS, Tohidlou M, Naderi-Manesh H, Amani V (2021) Synthesis, characterization, structural studies, DNA interaction, and cytotoxic studies of palladium(II) mixed-ligand complexes containing 2,2′-bipyridine,5,6-dimethyl-1,10-phenanthroline and tetrazole-5-thiol ligands. Inorg Chim Acta 514:1–11

    Article  Google Scholar 

  8. Lobana TS (2021) Heterocyclic-2-thione derivatives of group 10–12 metals: coordination versatility, activation of CS (thione) bonds and biochemical potential. Coord Chem Rev 441:1–84

    Article  Google Scholar 

  9. Siwach P, Singh K, Sindhu M (2023) Synthesis, spectroscopic characterization and photophysical properties of transition metal complexes of 4-((3-fluoro-2-methylbenzylidene)amino)-5-methyl-4H-1,2,4-triazole-3-thiol. Results Chem 5:1–16

    Article  Google Scholar 

  10. Raper ES (1996) Complexes of heterocyclic thionates. Part 1. Complexes of monodentate and chelating ligands. Coord Chem Rev 153:199–255

    Article  CAS  Google Scholar 

  11. Li C, Huang S, Min C, Du P, Xia Y, Yang CY, Huang Q (2017) Highly productive synthesis, characterization, and fluorescence and heavy metal ion adsorption properties of poly(2,5-dimercapto-1,3,4-thiadiazole)nanosheets. Polymers 10(1):1–26

    Article  Google Scholar 

  12. Esmaiel M, Basuony H, Al-Nawasany M, Shulkamy M, Shaaban I, Abuelela A, Zoghaib W, Mohamed T (2020) Thiadiazole-2-thiol-5-thione and 2,5-dimercapto-1,3,4-thiadiazol tautomerism, conformational stability, vibrational assignments, inhibitor efficiency and quantum chemical calculations. ZPC 234:415–440

    CAS  Google Scholar 

  13. Raper ES (1985) Complexes of heterocyclic thione donors. Coord Chem Rev 161:115–184

    Article  Google Scholar 

  14. Ahmad DS, Isab AA, Ali S (2006) Structural and mechanistic aspects of platinum anticancer agents. Transition Met Chem 3:1003–1016

    Article  Google Scholar 

  15. Jung Y, Lippard SJ (2007) Direct cellular responses to platinum-induced DNA damage. Chem Rev 107:1387–1407

    Article  CAS  PubMed  Google Scholar 

  16. Wong D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Disc 4:307–320

    Article  Google Scholar 

  17. Dani RK, Bharty MK, Prakash O, Singh RK, Prashanth B, Singh S, Singh NK (2015) Ni(II) and Co(III) complexes of 5-methyl-1,3,4-thiadiazole-2-thiol: syntheses, spectral, structural, thermal analysis, and DFT calculation. J Coord Chem 68(15):2666–2681

    Article  CAS  Google Scholar 

  18. Abdullah B, Al-Jibori SA, Abdullah M, Al-Allaf TA (2007) Mononuclear and heterobimetallic complexes of palladium(II) with 4,5-diphenyl-1,2,4-triazole-3-thione. Asian J Chem 19(3):2307–2315

    CAS  Google Scholar 

  19. Al-Mouqdady OD, Al-Janabi AS, Hatshan MR, Al-Jibori SA, Fahan AS, Wagner C (2022) Synthesis, characterization, anti-bacterial and anticancer activities of palladium(II) mixed ligand complexes of 2-mercapto-5-methyl-1,3,4-thiadiazole (HmtzS) and phosphines. Crystal structure of [Pd(mtzS)2(dppf)].H2O.EtOH. J Mol Struct 1264:1–8

    Article  Google Scholar 

  20. Asma M, Badshah A, Ali S, Sohail M, Fettouhi M, Ahmad S, Malik A (2006) Synthesis, characterization of mixed ligand palladium(II) complexes of triphenylphosphine and anilines and their enzyme inhibition studies against β-glucuronidase. The crystal structure of trans-dichloro-(m-chloroaniline)(triphenylphosphine)palladium(II). Transition Met Chem 31:556–559

    Article  CAS  Google Scholar 

  21. Al-Jibori SA, Al-Zaubai AS, Mohammed MY, Al-Allaf TA (2007) Mixed ligand palladium(II) and platinum(II) complexes of tertiary diphosphines and benz-1,3-imidazoline-2-thione, benz-1,3-oxazoline-2-thione or benz-1,3-thiazoline-2-thione. Transition Met Chem 32(3):281–286

    Article  CAS  Google Scholar 

  22. Lobana TS, Verma R, Hundal G, Casyineira A (2000) Metal-heterocyclic thione interactions.: 12. heterocyclic 2-thiolates of platinum(II) and palladium(II): the crystal structures of first examples of cis-[M(η1-S-pyridine-2-thiolato)2(L-L)]{M=Pt,Pd, L-L= 1,2-bis(diphenylphosphino)ethane; M = Pt, L-L=1,2-bis(diphenylphosphino)ethene}complexes. Polyhesron. 19(8):899–906

    Article  CAS  Google Scholar 

  23. Al-Janabi AS, Irzoqi AA, Ahmed SA (2016) Synthesis and characterization of mixed ligands cadmium(II) complexes with N-Hydroxymethylsaccharinate and diphosphines. Tikrit J Pure Sci 21:54–60

    Article  Google Scholar 

  24. Al-Jibori SA, Khaleel TF, Ahmed SA, Al-Hayaly LJ, Merzweiler K, Wagner C, Hogarth G (2012) Heteroleptic palladium(II) and platinum(II) complexes of 1,1-bis(diphenylphosphino)ferrocene (dppf) and heterocyclic thionates: crystal structures of [Pt(Phozt)22-dppf)](PhoztH= 5-phenyl-1,3,4-oxadiazole-2-thione) and [Pd(bzoxt)22-dppf)](bzoxtH= benz-1,3-oxazoline-2-thione. Polyhedron 41(1):20–24

    Article  CAS  Google Scholar 

  25. Ortega PA, Vera LR, Campos-Vallette M, Diaz Fleming G (1996) Infrared spectra of metal(II) complexes of 1,3,4-thiadiazole-2,5-dithiol, 5-amino-1,2,4-dithiazol-3-thione and their acetyl drivatives. Spectrosc Lett 29(3):477–496

    Article  CAS  Google Scholar 

  26. Al-Jibori SA, Al-Nassiri I, Al-Hayaly L, Jassim A (2002) Mixed ligand transition metal complexes of tertiary phosphines and 5-phenyl-l,3,4-oxadiazole-2-thione. Transition Met Chem 27(2):191–195

    Article  CAS  Google Scholar 

  27. Al-Jibori SA, Al-Saraj E, Hollingsworth N, Hogarth G (2012) Palladium(II) complexes with 2-acetylamino-5-mercapto-1,3,4-thiadiazolate (amta) ligands: molecular structures of the all trans dipalladium “paddlewheel” Pd2(μ-amta)4 and Pd(κ1-amta)22-dppe). Polyhedron 44(1):210–214

    Article  CAS  Google Scholar 

  28. Faihan AS, Hatshan MR, Alqahtani AS, Nasr FA, Al-Jibori SA, Al-Janabi AS (2022) Promising bio-active complexes of platinum(II) and palladium(II) derived from heterocyclic thiourea: synthesis, characterization, DFT, molecular docking, and anti-cancer studies. J Mol Struct 1247:1–13

    Google Scholar 

  29. Alheety MA, Al-Jibori SA, Mahmood AR, Chaurasiya PK, Karadag A, Verma TN, Tiwari D (2023) A cheap and high yield route for synthesis of 3H–1,2-benzodithiol-3-thione for hydrogen storage applications. Int J Hydrog Energy 48(23):8549–8562

    Article  CAS  Google Scholar 

  30. Al-Janabi AM, Faihan AS, Al-Mutairi AM, Hatshan MR, Al-Jibori SA, Al-Janabi AS (2022) Spectroscopic, biological activity studies, and DFT calculations, of Pd(II) and Pt(II) complexes of 4-Methylene-3-phenyl-3,4-dihydroquinazoline-2(1H)-thione. J Indian Chem Soc 99(11):1–8

    Article  Google Scholar 

  31. Faihan AS, Al-Shammari RH, Ashfaq M, Muhammad S, Al-Jibori SA, Tahir MN, Hatshan MR, Al-Janabi AS, Al-Moayid SM (2023) Synthesis, spectroscopic, crystallographic, quantum and molecular docking investigations of cis-4,5-diphenylimidazolidine-2-thione. J Mol Struct 1286:1–10

    Article  Google Scholar 

  32. Dolomanov O, Bourhis L, Gildea R, Howard J, Puschmann H (2009) OLEX2: a complete structure solution, refinement. J Appl Cryst 42:339–341

    Article  CAS  Google Scholar 

  33. Bourhis L, Dolomanov O, Gildea R, Howard J, Puschmann H (2015) The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment-Olex2 dissected. Acta Cryst A71:59–75

    Google Scholar 

  34. Noh DY, Seo EM, Lee HJ, Jang HY, Choi MG, Kim YH, Hong J (2001) Syntheses and characterization of heterobimetallic complexes (dppf)Pt(dithiolate)(dppf: bis(diphenylphosphino)ferrocene); X-ray crystal structures of (dppf) PtL where L= dmit, phdt and i-mnt. Polyhedron 20:1939–1945

    Article  CAS  Google Scholar 

  35. Shanmugakala R, Tharmaraj P, Sheela C, Anitha C (2012) Synthesis and studies on S-triazine-based ligand and its metal complexes. Int J Inorg Chem 2012:1–7

    Article  Google Scholar 

  36. Han WS, Kim YJ, Lee SW (2003) Reactivity of [Pt(dppf)Cl2] toward simple organic thiolates: preparation and structures of [Pt(dppf)(SPh)2], [Pt(dppf)(S-n-Pr)2] and [Pt(dppf)(SCH2CH2CH2S)](dppf= Fe(η5-C5H4PPh2)2. Bull Kor Chem Soc 24:60–64

    Article  CAS  Google Scholar 

  37. Heidari L, Ghassemzadeh M, Fenske D, Fuhr O, Saeidifar M, Mohsenzadeh F (2020) Unprecedented palladium(II) complex containing dipodal 1,3,4-thiadiazole derivatives: synthesis, structure, and biological and thermal investigations. New J Chem 44(39):16769–16775

    Article  CAS  Google Scholar 

  38. Al-Fakeh MS, Allazzam GA, Yarkandi NH (2021) Ni(II), Cu(II), Mn(II), and Fe(II) metal complexes containing 1,3-bis(diphenylphosphino)propane and pyridine derivative: synthesis, characterization, and antimicrobial activity. Int J Biomater 2021:1–12

    Article  Google Scholar 

  39. Qadir AM, Abdullah AI, Al-Jibor S, Talal A (2004) Palladium(II) and platinum(II) complexes with mixed ligands of tertiary monophosphines and 5-phenyl-1,3,4-oxadiazole-2-thione or 4,5-diphenyl-1,2,4-triazole-3-thione. Asian J Chem 16(3):1181–1188

    CAS  Google Scholar 

  40. Tarulli SH, Quinzani OV, Mandolesi SD, Guida JA, Echeverria GV, Piro OE, Castellano EE (2009) Z Anorg Allg Chem 645:117–123

    Google Scholar 

  41. Mohamad H, Ali K, Gerber T, Hosten E (2022) Novel palladium(II) complex derived from mixed ligands of dithizone and triphenylphosphine synthesis, characterization, crystal structure, and DFT study. Bull Chem Soc Ethiopia 36(3):617–626

    Article  CAS  Google Scholar 

  42. Bendjeffal H, Guibedj D, Chastanet G, Letard JF, Djazi F, Abbaci A, Guerfi K, Bouhedja Y (2016) SILAR deposition of Ni(bpy)3X:{X=(NCS)2,(Fe(CN)5NO), and (Ag(CN)2)2} thin films on glass substrates. Synth React Inorg Met-Org, Nano-Met Chem 46(12):1741–1750

    Article  CAS  Google Scholar 

  43. Mamine H, Bendjeffal H, Metidji T, Djebli A, Rebbani N, Bouhedja Y (2019) Structural, optical and electrical properties of Ni(II)-2,2-bipyridine complexes thin films deposited on glass substrates. J Sci Adv Mater Devices 4(3):459–466

    Article  Google Scholar 

  44. Saleh R, Mohammad H (2021) Synthesis and characterization of palladium(II) and platinum (II) mixed ligand complexes of the type [M(bpozs)2(dppf)]Cl2, bpozs= 2-(benzylthio)-5-phenyl-1,3,4-oxadiazole. ZJPAS 33(1):77–90

    Google Scholar 

  45. Evans RC, Douglas P, Winscom CJ (2006) Coordination complexes exhibiting room-temperature phosphorescence: evaluation of their suitability as triplet emitters in organic light emitting diodes. Coord Chem Rev 250(15–16):2093–2126

    Article  CAS  Google Scholar 

  46. Mahmoud ME, Haggag SS, Rafea MA, Abdel-Fattah TM (2009) Nano-sized Co(II)-8-hydroxyquinolate complex thin film via surface layer-by-layer chemical deposition method: optimized factors and optical properties. Polyhedron 28(16):3407–3414

    Article  CAS  Google Scholar 

  47. Al-Jibori SA, Abdullah A, Al-Allaf T (2007) Mononuclear and heterobimetallic palladium(II) and platinum(II) complexes containing the mixed ligands N-(2-pyridyl or 2-pyrimidyl) acetamide and tertiary diphosphine. Transition Met Chem 32:398–406

    Article  CAS  Google Scholar 

  48. Sutton D (1968) Electronic spectra of transition metal complexes: an introductory text. McGraw-Hill, London

    Google Scholar 

  49. Amin OH, Al-Hayaly IJ, Al-Jibori SA, Al-Allaf TA (2004) Heterobimetallic complexes of palladium(II) and platinum(II) bridged by the ligand 5-phenyl-1,3,4-oxadiazole-2-thione. Polyhedron 23(11):2013–2020

    Article  CAS  Google Scholar 

  50. Mohamed DS, Al-Jibori SA, Behjatmanesh-Ardakani R, Faihan AS, Yousef TA, Alhamzani AG, Abou-Krisha MM, Al-Janabi AS, Hsiao BS (2023) Spectroscopic, anti-acncer activity, and DFT computational studies of Pt(II) complexes with 1-benzyl-3-phenylthiourea and phosphine/diamine ligands. Inorganics 11(3):1–13

    Article  Google Scholar 

  51. Islam M, Sarker M, Kumer A, Sunanda P (2019) The comparison of primary, secondary and tertiary amine ligands on palladium(II) complex ion on thermo-physical, chemical reactivity, and biological properties: a DFT study. Cumhuriyet Sci J 40(3):679–694

    Article  Google Scholar 

  52. Aminzadeh M, Mansouri-Torshizi H, Aleeshah R, Abdi K, Saeidifar M (2021) A new palladium-based antiproliferative agent: synthesis, characterization, computational calculations, cytotoxicity, and DNA binding properties. Biometals 34(5):1173–1189

    Article  CAS  PubMed  Google Scholar 

  53. Matiadis D, Tsironis D, Stefanou V, Igglessi-Markopoulou O, McKee V, Sanakis Y, Lazarou K, Chrissanthopoulos A, Yannopoulos S, Markopoulos J (2017) X-ray crystallographic analysis, EPR studies, and computational calculations of a Cu(II) tetramic acid complex. Bioinorg Chem Appl 2017:1–11

    Article  Google Scholar 

  54. Olanrewaju A, Ibeji C, Festus S (2018) Synthesis, characterization, and computational studies of metal(II) complexes derived from β-diketone and para-aminobenzoic acid. Indian J Heterocycl Chem 28(3):351–361

    CAS  Google Scholar 

  55. Yusuf T, Quadri T, Tolufashe G, Olasunkanmi L, Ebenso E, Van Zyl W (2020) Synthesis and structures of divalent Co, Ni, Zn and Cd complexes of mixed dichalcogen and dipnictogen ligands with corrosion inhibition properties: experimental and computational studies. RSC Adv 10(69):41967–41982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Koparir P, Rebaz O, Karatepe M, Ahmed L (2020) Synthesis, characterization, and theoretical inhibitor study for (1E,1’E)-2,2’-thiobis(1-(3-mesityl-3-methylcyclobutyl)ethan-1-one)dioxime. El-Cezeri 8(3):1495–1510

    Google Scholar 

  57. El-Kholy D, Mostafa M (2020) Synthesis, characterization and biological studies of Cu2+, Ni2+, Cd2+ and Pt4+ complexes derived from 3-(3H–1,2,4-triazole-4-(5H)-ylimino)butane-2-one-oxime (L). J Transit Met Complexes 3(2020):1–15

    Article  Google Scholar 

  58. Warad I, Suboh H, Al-Zaqri N, Alsalme A, Alharthi F, Aljohani M, Zarrouk A (2020) Synthesis and physicochemical, DFT, thermal and DNA-binding analysis of a new pentadentate N3S2 schiff base ligand and its [CuN3S2]2+ complexes. RSC Adv 10(37):21806–21821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ferchichi A, Makhlouf J, El-Bakri Y, Saravanan K, Valkonen A, Hashem H, Ahmad S, Mirani WS (2022) Self-assembly of new cobalt complexes based on [Co(SCN)4], synthesis, empirical, antioxidant activity, and quantum theory investigations. Sci Rep 12(1):1–18

    Article  Google Scholar 

  60. Alhazmi F, Morad M, Abou-Melha K, El-Metwaly N (2023) Synthesis and characterization of new mixed ligand complexes; density functional theory, hirshfield, and in silico assays strengthen the bioactivity performed in vitro. ACS Omega 8:4220–4233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Abdullah T, Behjatmanesh-Ardakani R, Faihan AS, Jirjes HM, Abou-Krisha M, Yousef TA, Kenawy SH, Al-Janabi AS (2023) Cd(II) and Pd(II) mixed ligand complexes of dithiocarbamate and tertiary phosphine ligands spectroscopic, anti-microbial, and computational studies. Molecules 28(5):1–14

    Article  Google Scholar 

  62. Ali K, Mohamad H, Gerber T, Hosten E (2022) Zinc(II) complex containing oxazole ring: synthesis, crystal structure, characterization, DFT calculations, and hirshfeld surface analysis. Acta Chim Slov 69(4):905–912

    CAS  Google Scholar 

  63. Novikov A, Volkov M, Safonov A, Grigoriev M, Abkhalimov E (2021) Synthesis and characterization of new guanine complexes of Pt(IV) and Pd(II) by X-ray diffraction and hirshfeld surface analysis. Crystals 11(11):1–14

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Chemistry Department, the College of Education and the Salahaddin University for their cooperation in accomplishment of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhi A. Al-Jibori.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 725 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, R.A., Mahamad, H.A. & Al-Jibori, S.A. Pd(II) and Pt(II) Mixed Ligand Complexes Containing 2,5-Dimercapto-1,3,4-Thiadizole and 1,2-Bis(diphenylphosphino)ethane Ligands, Synthesis, Characterization, Crystal Structure, Anticancer and Computational Studies. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00929-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00929-y

Keywords

Navigation