Skip to main content

Advertisement

Log in

Simple and Easy Control-Synthesis of Pure α-Bi2O3 and Bi2O2CO3: Morphological, Optical and Solar Photon-Energy Photocatalytic Studies

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Herein, a simple control-synthesis of pure α-Bi2O3 or Bi2O2CO3 was realized for opto-electronics and photocatalytic studies. Precipitation via different precipitants (NaOH, KOH and NH4OH) as well as sol gel techniques have been used to form pure α-Bi2O3 or Bi2O2CO3 using Bi(NO3)3·5H2O. The XRD analysis verified that pure α-Bi2O3 phase was formed through using NaOH and sol–gel techniques while KOH and NH4OH produced pure Bi2O2CO3. The morphological shape of α-Bi2O3 (NaOH) powder shows rods structure having different length and diameter. The SEM image of Bi2O2CO3 (KOH) powder illustrates cotton-shaped like structure while Bi2O2CO3 (NH4OH) powder shows spongy grains shape. The SEM micrograph of α-Bi2O3 powder (sol–gel) displays a highly porous network. The optical band gap energy of the α-Bi2O3 (NaOH) and α-Bi2O3 (sol gel) was found to be 2.88 and 2.91 eV, respectively. On the other hand, Bi2O2CO3-KOH and Bi2O2CO3-NH4OH powders revealed UV band gap energies of 3.56 and 352 eV, respectively. Optically, α-Bi2O3 sample revealed a high refractive index value above 2.3. The solar energy photocatalytic tests indicated that α-Bi2O3 (sol gel) catalyst has a remarkable efficiency of 78% and 80% to degrade methylene blue (MB) and Congo red (CR) dyes during 210 min, respectively. Bi2O2CO3 (KOH) powder exhibits the second highest photocatalytic activity for MB and CR dyes reached to 71% and 77% under sunlight irradiation. The high performance of α-Bi2O3 (sol–gel) catalyst can be ascribed to the morphological structure, high crystallinity, wide light absorption and well charge separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All relevant data and material are presented in the main paper.

References

  1. Sahni M, Kumar S, Chauhan S, Singh M, Pandit S, Sati PC, Kumar M, Kumar A, Kumar N (2022) Structural, optical and photocatalytic properties of Ni doped BiFeO3 nanoparticles. Mater Today: Proc 49:3015–3021

    CAS  Google Scholar 

  2. Munyai S, Mahlaule-Glory LM, Hintsho-Mbita NC (2022) Green synthesis of Zinc sulphide (ZnS) nanostructures using S. frutescences plant extract for photocatalytic degradation of dyes and antibiotics. Mater. Res. Express 9:015001

    Article  CAS  Google Scholar 

  3. Rodríguez-Chueca J, Giannakis S, Tranchant M, Oulego P, Bensimon M, Pulgarín C, Benjwal P, Kar KK (2023) Solar disinfection of drinking water at alkaline pH, assisted by ashes of spices and herbs containing catalytic metals, in a novel “phyto-Fenton” process. Chem Eng J 464:142598

    Article  Google Scholar 

  4. Sarkodie B, Amesimeku J, Frimpong C, Howard EK, Feng Q, Xu Z (2023) Photocatalytic degradation of dyes by novel electrospun nanofibers: a review. Chemosphere 313:137654

    Article  CAS  PubMed  Google Scholar 

  5. Ramesh P, Rajendran A (2023) Photocatalytic dye degradation activities of green synthesis of cuprous oxide nanoparticles from Sargassum wightii extract. Chem Phys Impact 6:100208

    Article  Google Scholar 

  6. Aziz A, Memon Z, Bhutto A (2023) Efficient photocatalytic degradation of industrial wastewater dye by Grewia asiatica mediated zinc oxide nanoparticles. Optik 272:170352

    Article  CAS  Google Scholar 

  7. Suvathi S, Rathi R, Ravichandran K, Kavitha P, Ayyanar M, Praseetha PK, Chidhambaram N (2023) Improved photocatalytic dye degradation and seed germination through enzyme-coupled titanium oxide nanopowder—a cost-effective approach. Environ Res 2023:114973

    Article  Google Scholar 

  8. Pradhan D, Falletta E, Dash SK (2023) Enhanced and rapid photocatalytic degradation of toxic dyes by cobalt oxide and modified cobalt oxide under solar light irradiation. Opt Mater 135:113368

    Article  CAS  Google Scholar 

  9. Reddy CV, Nagar A, Shetti NP, Reddy IN, Basu S, Shim J, Kakarla RR (2023) Novel g-C3N4/BiVO4 heterostructured nanohybrids for high efficiency photocatalytic degradation of toxic chemical pollutants. Chemosphere 322:138146

    Article  CAS  PubMed  Google Scholar 

  10. Kumari H, Sonia S, Ranga R, Chahal S, Devi S, Sharma S, Kumar S, Kumar P, Kumar S, Kumar A, Parmar R (2023) A review on photocatalysis used for wastewater treatment: dye degradation. Water Air Soil Pollut 234:349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alshammari GM, Al-Ayed MS, Abdelhalim MA, Al-Harbi LN, Qasem AA, Yahya MA (2023) Fabrication of hierarchical flower-like WO3 nanoparticles for effective metal ions sensing and catalytic degradation of organic dyes. Environ Res 233:116468

    Article  CAS  PubMed  Google Scholar 

  12. Cheng L, Zhang Y, Fan W, Ji Y (2022) Synergistic adsorption-photocatalysis for dyes removal by a novel biochar-based Z-scheme heterojunction BC/2ZIS/WO3: mechanistic investigation and degradation pathways. Chem Eng J 445:136677

    Article  CAS  Google Scholar 

  13. Huang-Mu L, Devanesan S, Farhat K, Kim W, Sivarasan G (2023) Improving the efficiency of metal ions doped Fe2O3 nanoparticles: photocatalyst for removal of organic dye from aqueous media. Chemosphere 337:139229

    Article  CAS  PubMed  Google Scholar 

  14. Mehra S, Saroha J, Rani E, Sharma V, Goswami L, Gupta G, Srivastava AK, Sharma SN (2023) Development of visible light-driven SrTiO3 photocatalysts for the degradation of organic pollutants for waste-water treatment: contrasting behavior of MB & MO dyes. Opt Mater 136:113344

    Article  CAS  Google Scholar 

  15. Balakrishnan A, Gaware GJ, Chinthala M (2023) Heterojunction photocatalysts for the removal of nitrophenol: a systematic review. Chemosphere 310:136853

    Article  CAS  PubMed  Google Scholar 

  16. Chu D, Wu Y, Wang L (2022) Synthesis and characterization of novel coral spherical bismuth oxide. Results Chem 4:100448

    Article  CAS  Google Scholar 

  17. Wang F, Cao K, Zhang Q, Gong X, Zhou Y (2014) A computational study on the photoelectric properties of various Bi2O3 polymorphs as visible-light driven photocatalysts. J Mol Model 20:2506

    Article  PubMed  Google Scholar 

  18. Kanagaraj T, Kumar PSM, Thomas R, Kulandaivelu R, Subramani R, Mohamed RN, Lee S, Chang SW, Chung WJ, Nguyen DD (2022) Novel pure α-, β-, and mixed-phase α/β-Bi2O3 photocatalysts for enhanced organic dye degradation under both visible light and solar irradiation. Environ Res 205:112439

    Article  CAS  PubMed  Google Scholar 

  19. Astuti Y, Anggraeni D, Darmawan A (2020) Photocatalytic performance of bismuth oxide prepared by citric acid-fueled solution combustion on decolorisation of organic dye molecules. IOP Conf Ser: Mater Sci Eng 833:012061

    Article  CAS  Google Scholar 

  20. Zhu B, Dong Q, Huang J, Song D, Chen L, Chen Q, Zhai C, Wang B, Klemes JJ, Tao H (2023) Visible-light driven p–n heterojunction formed between α-Bi2O3 and Bi2O2CO3 for efficient photocatalytic degradation of tetracycline. RSC Adv 13:1594–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kusuma KB, Manju M, Ravikumar CR, Dileepkumar VG, Kumar AN, Santosh MS, Murthy HCA, Gurushantha K (2022) Probe sonicated synthesis of bismuth oxide (Bi2O3): photocatalytic application and electrochemical sensing of ascorbic acid and lead. J Nanomater 2022:3256611

    Article  Google Scholar 

  22. Moumen A, Zappa D, Poli N, Comini E (2021) Catalyst-assisted vapor liquid solid growth of α-Bi2O3 nanowires for acetone and ethanol detection. Sens Actuators B Chem 346:130432

    Article  CAS  Google Scholar 

  23. Devi MS, Abinaya S, Maiyalagan T, Keerthiga G (2022) Nanorods of α-Bi2O3 for photocatalytic degradation of methylene blue. Mater Today: Proc 50:2840–2846

    CAS  Google Scholar 

  24. Wu Z, Zeng D, Liu X, Yu C, Yang K, Liu M (2018) Hierarchical δ-Bi2O3/Bi2O2CO3 composite microspheres: phase transformation fabrication, characterization and high photocatalytic performance. Res Chem Intermed 44:5995–6010

    Article  CAS  Google Scholar 

  25. Selvamani T, Anandan S, Granone L, Bahnemann DW, Ashokkumar M (2018) Phase-controlled synthesis of bismuth oxide polymorphs for photocatalytic applications. Mater Chem Front 2:1664–1673

    Article  CAS  Google Scholar 

  26. Chouke PB, Dadure KM, Potbhare AK, Bhusari GS, Mondal A, Chaudhary K, Singh V, Desimone MF, Chaudhary RG, Masram DT (2022) Biosynthesized δ-Bi2O3 nanoparticles from Crinum viviparum flower extract for photocatalytic dye degradation and molecular docking. ACS Omega 7:20983–20993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang Y, Wang W, Zhang Q, Cao J, Huang R, Ho W, Lee S (2016) In situ fabrication of α-Bi2O3/(BiO)2CO3 nanoplate heterojunctions with tunable optical property and photocatalytic activity. Sci Rep 6:23435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peng Y, Liu M-Q, Zhao N-N, Kan P-F (2021) Controlled synthesis of Bi2O2CO3 nanorods with enhanced photocatalytic performance. CrystEngComm 23:3671–3680

    Article  CAS  Google Scholar 

  29. Sahu SK, Sikdar S, Ghosh MK, Ghorai TK (2022) Investigation of photocatalytic and DNA interaction of novel heterostructured GO/Bi2O3/ZnO nanocomposite. Mater Sci Energy Technol 5:324–333

    CAS  Google Scholar 

  30. Viruthagiri G, Kannan P, Indhumathi VK (2017) Photocatalytic activity of α-phase bismuth oxide nanoparticles under visible light. Int J Adv Sci Res 2:01–07

    Google Scholar 

  31. Abu-Dief AM, Mohamed WS (2017) α-Bi2O3 nanorods: synthesis, characterization and UV-photocatalytic activity. Mater Res Express 4:035039

    Article  Google Scholar 

  32. Liu X, Fan Q, Li F, Wei L, Yu C (2021) Nd3+-doped β-Bi2O3/Bi2O2CO3 composite nanoplates fabricated via phase transformation and their superior visible light photocatalytic performance for removing phenols and dyes. J Nanopart Res 23:233

    Article  CAS  Google Scholar 

  33. Mahata MK, Koppe T, Mondal T, Brüsewitz C, Kumar K, Rai VK, Hofsäss H, Vetter U (2015) Incorporation of Zn2+ ions into BaTiO3:Er3+/Yb3+ nanophosphor: an effective way to enhance upconversion, defect luminescence and temperature sensing. Phys Chem Chem Phys 17:20741–20753

    Article  CAS  PubMed  Google Scholar 

  34. Som S, Sharma SK (2012) Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization. J Phys D: Appl Phys 45:415102

    Article  Google Scholar 

  35. Hao Z, Xu L, Wei B, Fan L, Liu Y, Zhang M, Gao H (2015) Nanosize α−Bi2O3 decorated Bi2MoO6 via alkali etching process for enhanced photocatalytic performance. RSC Adv 5:12346–12353

    Article  CAS  Google Scholar 

  36. Han A, Sun J, Chuah GK, Jaenicke S (2017) Enhanced p-cresol photodegradation over BiOBr/ Bi2O3 in the presence of rhodamine B. RSC Adv 7:145–152

    Article  CAS  Google Scholar 

  37. Senol SD, Ozugurlu E, Arda L (2020) Synthesis, structure and optical properties of (Mn/Cu) co-doped ZnO nanoparticles. J Alloys Compd 822:153514

    Article  CAS  Google Scholar 

  38. Ravindra NM, Ganapathy P, Choi J (2007) Energy gap–refractive index relations in semiconductors—an overview. Infrared Phys Technol 50:21–29

    Article  CAS  Google Scholar 

  39. Tripathy SK (2015) Refractive indices of semiconductors from energy gaps. Opt Mater 46:240–246

    Article  CAS  Google Scholar 

  40. Paul S, Sen B, Chakraborty N, Das S, Mondal S, Chattopadhyay AP, Ali SI (2022) pH-regulated hydrothermal synthesis and characterization of Sb4O5X2 (X = Br/Cl) and its use for the dye degradation of methyl orange both with and without light illumination. RSC Adv 12:8374–8384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wahba MA, Yakout SM (2019) Innovative visible light photocatalytic activity for V-doped ZrO2 structure: optical, morphological, and magnetic properties. J Sol-Gel Sci Technol 92:628–640

    Article  CAS  Google Scholar 

  42. Wahba MA, Yakout SM, Mohamed WAA, Galal HR (2020) Remarkable photocatalytic activity of Zr doped ZnO and ZrO2/ZnO nanocomposites: structural, morphological and photoluminescence properties. Mater Chem Phys 256:123754

    Article  CAS  Google Scholar 

  43. Gao H, Wang F, Wang S, Wang X, Yi Z, Yang H (2019) Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: synthesis and photocatalytic mechanism. Mater Res Bull 115:140–149

    Article  CAS  Google Scholar 

  44. Wang Y, Sun X, Xian T, Liu G, Yang H (2021) Photocatalytic purification of simulated dye wastewater in different pH environments by using BaTiO3/Bi2WO6 heterojunction photocatalysts. Opt Mater 113:110853

    Article  CAS  Google Scholar 

  45. Sabouri Z, Sabouri M, Moghaddas SSTH, Darroudi M (2023) Design and preparation of amino-functionalized core-shell magnetic nanoparticles for photocatalytic application and investigation of cytotoxicity effects. J Environ Health Sci Eng 21:93–105

    Article  CAS  PubMed  Google Scholar 

  46. Sabouri Z, Sabouri S, Moghaddas SSTH, Mostafapour A, Amiri MS, Darroudi M (2022) Facile green synthesis of Ag-doped ZnO/CaO nanocomposites with Caccinia macranthera seed extract and assessment of their cytotoxicity, antibacterial, and photocatalytic activity. Bioprocess Biosyst Eng 45:1799–1809

    Article  CAS  PubMed  Google Scholar 

  47. Sabouri Z, Oskuee RK, Sabouri S, Moghaddas SSTH, Samarghandian S, Abdulabbas HS, Darroudi M (2022) Phytoextract-mediated synthesis of Ag-doped ZnO–MgO–CaO nanocomposite using Ocimum basilicum L seeds extract as a highly efficient photocatalyst and evaluation of their biological effects. Ceram Int 49:20989–20997

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Mabrouk Yakout.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahba, M.A., Yakout, S.M., Abdel-Monem, Y.K. et al. Simple and Easy Control-Synthesis of Pure α-Bi2O3 and Bi2O2CO3: Morphological, Optical and Solar Photon-Energy Photocatalytic Studies. Chemistry Africa 7, 195–207 (2024). https://doi.org/10.1007/s42250-023-00749-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00749-6

Keywords

Navigation