Skip to main content
Log in

A computational study on the photoelectric properties of various Bi2O3 polymorphs as visible-light driven photocatalysts

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This paper presents first-principle studies on the photoelectric properties of various Bi2O3 polymorphs. The intrinsic reason of different photocatalytic activities was revealed by electronic structures and optical features. Results showed that for α, β, and γ-Bi2O3, the top of valence bands were mainly constructed by Bi6s and O2p orbitals, and the bottom of conduction bands were dominantly composed by Bi6p orbital. However, two intermediate bands were found at the Fermi level for γ-Bi2O3, which leads to a two-step transition from the top of valence band to the bottom of conduction band and facilitates electron transition under irradiation. Absent forbidden gap was found in δ-Bi2O3, resulting in a semimetallic character due to its intrinsic oxygen vacancy and high ionic conductivity. Moreover, the optical properties of α, β, and γ-Bi2O3 were investigated by absorption spectrum, dielectric constant function, and energy loss spectroscopy. We concluded that the photocatalytic activities followed in the order of γ-Bi2O3 > β-Bi2O3 > α-Bi2O3, in accord with the experimental report. Calculation results illustrated the experimental observations and provided a useful guidance in exploring promising visible-light semiconductor photocatalysts.

Bi2O3 polymorphsᅟ

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blanco J, Malato S, Fernández-Ibañez P, Alarcón D, Gernjak W, Maldonado MI (2009) Renew Sust Energ Rev 13:1437

    Article  CAS  Google Scholar 

  2. Kuo TJ, Lin CN, Kuo CL, Huang MH (2007) Chem Mater 19:5143

    Article  CAS  Google Scholar 

  3. Ren J, Wang W, Shang M, Sun S, Gao E (2011) ACS Appl Mater Interfaces 3:2529

    Article  CAS  Google Scholar 

  4. Chen X, Mao SS (2007) Chem Rev 107:2891

    Article  CAS  Google Scholar 

  5. Fujishima A (1972) Nature 238:37

    Article  CAS  Google Scholar 

  6. Linsebigler AL, Lu G, Yates JT Jr (1995) Chem Rev 95:735

    Article  CAS  Google Scholar 

  7. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269

    Article  CAS  Google Scholar 

  8. Jimmy CY, Wu L, Lin J, Li P, Li Q (2003) Chem Commun 1552

  9. Hirai T, Okubo H, Komasawa I (1999) J Phys Chem B 103:4228

    Article  CAS  Google Scholar 

  10. Kim J, Lee CW, Choi W (2010) Environ Sci Technol 44:6849

    Article  CAS  Google Scholar 

  11. Hameed A, Gombac V, Montini T, Felisari L, Fornasiero P (2009) Chem Phys Lett 483:254

    Article  CAS  Google Scholar 

  12. Leontie L, Caraman M, Alexe M, Harnagea C (2002) Surf Sci 507:480

    Article  Google Scholar 

  13. Huang CC, Wen TY, Fung KZ (2006) Mater Res Bull 41:110

    Article  CAS  Google Scholar 

  14. Schröder F, Bagdassarov N, Ritter F, Bayarjargal L (2010) Phase Transit 83:311

    Article  Google Scholar 

  15. Drache M, Roussel P, Wignacourt JP (2007) Chem Rev 107:80

    Article  CAS  Google Scholar 

  16. Laurent K, Wang GY, Tusseau-Nenez S, Leprince-Wang Y (2008) Solid State Ion 178:1735

    Article  CAS  Google Scholar 

  17. Cornei N, Tancret N, Abraham F, Mentré O (2006) Inorg Chem 45:4886

    Article  CAS  Google Scholar 

  18. Sammes NM, Tompsett GA, Näfe H, Aldinger F (1999) J Eur Ceram Soc 19:1801

    Article  CAS  Google Scholar 

  19. Hameed A, Montini T, Gombac V, Fornasiero P (2008) J Am Chem Soc 130:9658

    Article  CAS  Google Scholar 

  20. Leontie L, Caraman M, Delibaş M, Rusu GI (2001) Mater Res Bull 36:1629

    Article  CAS  Google Scholar 

  21. Zou W, Hao WC, Xin X, Wang TM (2009) Chin J Inorg Chem 25:1971

    CAS  Google Scholar 

  22. Cheng HF, Huang BB, Lu J, Wang ZY, Xu B, Qin XY, Zhang XY, Dai Y (2010) Phys Chem Chem Phys 12:15468

    Article  CAS  Google Scholar 

  23. Yin LF, Niu JF, Shen ZY, Sun Y (2011) Sci China Chem 54:180

    Article  Google Scholar 

  24. Fischer TH, Almlof J (1992) J Phys Chem 96:9768

    Article  CAS  Google Scholar 

  25. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  26. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip P, Clark SJ, Payne MC (2002) J Phys Condens Matter 14:2717

    Article  CAS  Google Scholar 

  27. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  Google Scholar 

  28. Harwig H (1978) Z Anorg Allg Chem 444:151

    Article  CAS  Google Scholar 

  29. Blower SK, Greaves C (1988) Acta Crystallogr C 44:587

    Article  Google Scholar 

  30. Simonov VI, Kargin YF (1992) Acta Crystallogr B 48:604

    Article  Google Scholar 

  31. Yashima M, Ishimura D (2003) Chem Phys Lett 378:395

    Article  CAS  Google Scholar 

  32. McCabe EE, Jones IP, Zhang D, Hyatt NC, Greaves C (2007) J Mater Chem 17:1193

    Article  CAS  Google Scholar 

  33. Battle PD, Catlow CRA, Drennan J, Murray AD (1983) J Phys C 16:561

    Article  Google Scholar 

  34. Gattow G, Schroeder H (1978) Z Anorg Allg Chem 444:151

    Article  Google Scholar 

  35. Walsh A, Watson GW, Payne DJ, Edgell RG, Guo J, Glans PA, Learmonth T, Smith KE (2006) Phys Rev B 73:235104

    Article  Google Scholar 

  36. Mohn CE, Stølen S, Norberg ST, Hull S (2009) Phys Rev B Condens Matter 80:024205

    Article  Google Scholar 

  37. Medvedeva NI, Zhukov VP, Gubanov VA, Novikov DL, Klein BM (1996) J Phys Chem Solids 57:1243

    Article  CAS  Google Scholar 

  38. Aidhy DS, Nino JC, Sinnott SB, Wachsman ED, Phillpot SR (2008) J Am Ceram Soc 91:2349

    Article  CAS  Google Scholar 

  39. Tanaka I, Togo A, Seko A, Oba F, Koyama Y, Kuwabara A (2010) J Mater Chem 20:10335

    Article  CAS  Google Scholar 

  40. Carlsson JM, Hellsing B, Domingos HS, Bristowe PD (2002) Phys Rev B 65:205122

    Article  Google Scholar 

  41. Schumb WC, Rittner ES (1943) J Am Chem Soc 65:1055

    Article  CAS  Google Scholar 

  42. Oniyama E, Wahlbeck PG (1998) J Phys Chem B 102:4418

    Article  CAS  Google Scholar 

  43. Klinkova LA, Nikolaichik VI, Barkovskii NV, Fedotov VK (2007) Russ J Inorg Chem 52:1822

    Article  Google Scholar 

  44. Gurunathan K (2004) Int J Hydrog Energy 29:933

    Article  CAS  Google Scholar 

  45. Hao WC, Gao Y, Jing X, Zou W, Chen Y, Wang TM (2014) J Mater Sci Technol 30:192

    Article  Google Scholar 

  46. Sun YY, Wang WZ, Zhang L, Zhang ZJ (2012) Chem Eng J 211–212:161

    Article  Google Scholar 

  47. Zhang HJ, Liu L, Zhou Z (2012) RSC Adv 2:9224

    Article  CAS  Google Scholar 

  48. Ma XC, Dai Y, Guo M, Huang BB (2012) Chem Phys Chem 13:2304

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the financial support by Sichuan Provincial Education Department Project (No. 14ZB0054), Southwest Petroleum University Fund and Scientific Research Staring Project of SWPU (2013XJZ017, 2014QHZ020, 2014PYZ012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Cao, K., Zhang, Q. et al. A computational study on the photoelectric properties of various Bi2O3 polymorphs as visible-light driven photocatalysts. J Mol Model 20, 2506 (2014). https://doi.org/10.1007/s00894-014-2506-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2506-z

Keywords

Navigation