Skip to main content
Log in

Theoretical study on the bridge comparison of TiO2 nanoparticle sensitizers based on phenoxazine in dye-sensitized solar cells

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A series of metal-free donor–π-bridge–acceptor dyes based on phenoxazine as the electron donor and cyanoacrylic acid as the electron acceptor groups with different π-spacers were studied by density functional theory (DFT) and time-dependent DFT calculations. The aromatic rings such as benzene, furan, thiophene, pyrrole, thiazole, and silole were used as π-spacer to link the donor and acceptor moieties. All of the dyes with π-spacer exhibited a narrower band gap than the parent molecule without π-spacer due to the π-conjugation expansion. The results showed that the dye with a furan spacer (POXF) is the most efficient sensitizer for dye-sensitized solar cell due to the largest LHE, high V oc, and red-shifted absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Standridge SD, Schatz GC, Hupp JT (2009) J Am Chem Soc 131:8407–8409

    Article  CAS  Google Scholar 

  2. Sánchez-de-Armas R, Lόpez JO, San-Miguel MA, Sanz JF (2010) J Chem Theory Comput 6:2856–2865

    Article  Google Scholar 

  3. Feng J, Jiao Y, Ma W, Nazeeruddin MK, Grätzel M, Meng S (2013) J Phys Chem C 117:3772–3778

    Article  CAS  Google Scholar 

  4. Agrawal S, Pastore M, Marotta G, Reddy MA, Chandrasekharam M, Angelis FD (2013) J Phys Chem C 117:9613–9622

    Article  CAS  Google Scholar 

  5. Liang M, Xu W, Cai F, Chen P, Peng B, Chen J, Li Z (2007) J Phys Chem C 111:4465–4472

    Article  CAS  Google Scholar 

  6. Singh SP, Roy MS, Justin Thomas KR, Balaiah S, Bhanuprakash K, Sharma GD (2012) J Phys Chem C 116:5941–5950

    Article  CAS  Google Scholar 

  7. Justin Thomas KR, Hsu YC, Lin JT, Lee K, Ho KC, Lai CH, Cheng YM, Chou PT (2008) Chem Mater 20:1830–1840

    Article  Google Scholar 

  8. Zhang G, Bala H, Cheng Y, Shi D, Lv X, Yu Q, Wang P (2009) Chem Commun 2198–2200

  9. Ko SB, Cho AN, Kim MJ, Lee CR, Park NG (2012) Dyes Pigment 94:88–98

    Article  CAS  Google Scholar 

  10. Miura H, Uchida S, Takata M, Sumioka K, Liska P (2008) Chem Commun 41:5194–5196

    Google Scholar 

  11. Koumura N, Wang ZS, Miyashita M, Uemura Y, Sekiguchi H, Cui Y, Mori A, Mori S, Hara K (2009) J Mater Chem 19:4829–4836

    Article  CAS  Google Scholar 

  12. Hara K, Wang ZS, Sato T, Furube A, Katoh R, Sugihara H, Dan-oh Y, Kasada C, Shinpo A, Suga S (2005) J Phys Chem B 109:15476–15482

    Article  CAS  Google Scholar 

  13. Kim S, Lee JK, Kang SO, Ko J, Yum JH, Fantacci S, Angelis FD, Censo DD, Nazeeruddin MK, Grätzel M (2006) J Am Chem Soc 128:16701–16707

    Article  CAS  Google Scholar 

  14. Burke A, Schmidt-Medne L, Ito S, Grätzel M (2007) Chem Commun 3:234–236

    Article  Google Scholar 

  15. Mori S, Nagata M, Nakahata Y, Yasuta K, Goto R, Kimura M, Taya M (2010) J Am Chem Soc 132:4054–4055

    Article  CAS  Google Scholar 

  16. Li C, Yum JH, Moon SJ, Herrmann A, Eickemeyer F, Pschirer NG, Erk P, Schöneboom J, Müllen K, Grätzel M (2008) ChemSusChem 1:615–618

    Article  CAS  Google Scholar 

  17. Kitamura T, Ikeda M, Shigaki K, Inoue T, Anderson NA, Ai X, Lian T, Yanagida S (2004) Chem Mater 16:1806–1812

    Article  CAS  Google Scholar 

  18. Kim C, Choi H, Kim S, Baik C, Song K, Kang MS, Kang SO, Ko J (2008) J Org Chem 73:7072–7079

    Article  CAS  Google Scholar 

  19. Liu WH, Wu IC, Lai CH, Lai CH, Chou PT, Li YT, Chen CL, Hsu YY, Chi Y (2008) Chem Commun 5152–5154

  20. Yum JH, Hagberg DP, Moon SJ, Karlsson KM, Marinado T, Sun L, Hagfeldt A, Nazeeruddin MK, Grätzel M (2009) Angew Chem Int Ed 48:1576–1580

    Article  CAS  Google Scholar 

  21. Zhang G, Bai Y, Li R, Shi D, Wenger S, Zakeeruddin SM, Grätzel M, Wang P (2009) Energy Environ Sci 2:92–95

    Article  CAS  Google Scholar 

  22. Akhtaruzzaman Md, Islam MA, El-Shafei A, Asao N, Jin T, Han L, Alamry KA, Kosa SA, Asiri AM, Yamamoto Y (2013) Tetrahedron 69:3444–3450

    Article  CAS  Google Scholar 

  23. Qin H, Wenger S, Xu M, Gao F, Jing X, Wang P, Zakeeruddin SM, Grätzel M (2008) J Am Chem Soc 130:9202–9203

    Article  CAS  Google Scholar 

  24. Wang ZS, Cui Y, Hara K, Dan-oh Y, Kasada C, Shinpo A (2007) Adv Mater 19:1138–1141

    Article  CAS  Google Scholar 

  25. Kim S, Choi H, Kim D, Song K, Kang SO, Ko J (2007) Tetrahedron 63:9206–9212

    Article  CAS  Google Scholar 

  26. Kim S, Choi H, Baik C, Song K, Kang SO, Ko J (2007) Tetrahedron 63:11436–11443

    Article  CAS  Google Scholar 

  27. Wan ZQ, Jia CY, Zhang JQ, Duan YD, Lin Y, Shi Y (2012) J Power Sources 199:426–431

    Article  CAS  Google Scholar 

  28. Li SL, Jiang KJ, Shao KF, Yang LM (2006) Chem Commun 2792–2794

  29. Koenigsmann C, Brennan BJ, Negre CFA, Koepf M, Durrell AC, Milot RL, Batista VS, Brudvig GW, Crabtree RH, Schmuttenmaer CA, Ripolles TS, Torre JA, Bisquert J (2014) Phys Chem Chem Phys 16:16629–16641

    Article  CAS  Google Scholar 

  30. Yu X, Ci Z, Liu T, Feng X, Wang C, Ma T, Bao M (2014) Dyes Pigment 102:126–132

    Article  CAS  Google Scholar 

  31. Lee W, Yuk SB, Choi J, Kim HJ, Kim HW, Kim SH, Kim B, Ko MJ, Kim JP (2014) Dyes Pigment 102:13–21

    Article  CAS  Google Scholar 

  32. Lee W, Choi J, Namgoong JW, Kim SH, Sun KC, Jeong SH, Yoo K, Ko MJ, Kim JP (2014) Dyes Pigment 104:185–193

    Article  CAS  Google Scholar 

  33. Li M, Kou L, Diao L, Zhang Q, Li Z, Wu Q, Lu W, Pan D (2015) J Phys Chem A 119:3299–3309

    Article  CAS  Google Scholar 

  34. Pastore M, Fantacci S, Angelis FD (2010) J Phys Chem C 114:22742–22750

    Article  CAS  Google Scholar 

  35. Peng B, Yang S, Li L, Cheng F, Chen J (2010) J Chem Phys 132:034305–034309

    Article  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross HB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A. 02; Gaussian. Inc, Wallingford, CT

  37. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  39. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  40. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  41. Dunning Jr TH, Hay PJ (1977) Modern theoretical chemistry. In: Schaefer III HF (ed), vol 3. Plenum, New York

  42. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  43. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  44. Zhang J, Li HB, Sun SL, Geng Y, Wu Y, Su ZM (2012) J Mater Chem 22:568–576

    Article  CAS  Google Scholar 

  45. Wang CL, Wang J, Bai FQ, Chen J, Zhang HX (2014) Int J Quantum Chem 114:560–567

    Article  CAS  Google Scholar 

  46. Zhang L, Cole JM (2015) ACS Appl Mater Interfaces 7:3427–3455

    Article  CAS  Google Scholar 

  47. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  48. Karlsson KM, Jiang X, Eriksson SK, Gabrielsson E, Rensmo H, Hagfeldt A, Sun L (2011) Chem Eur J 17:6415–6424

    Article  CAS  Google Scholar 

  49. Massin J, Ducasse L, Toupance T, Olivier C (2014) J Phys Chem C 118:10677–10685

    Article  CAS  Google Scholar 

  50. Wang ZS, Hara K, Dan-oh Y, Kasada C, Shinpo A, Suga S, Arakawa H, Sugihara H (2005) J Phys Chem B 109:3907–3914

    Article  CAS  Google Scholar 

  51. Cancès E, Mennucci B (1997) J Chem Phys 107:3032–3041

    Article  Google Scholar 

  52. Kamiya M, Tsuneda T, Hirao K (2002) J Chem Phys 117:6010–6015

    Article  CAS  Google Scholar 

  53. Heyd J, Scuseria G (2004) J Chem Phys 121:1187–1192

    Article  CAS  Google Scholar 

  54. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  55. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  56. Zhang CR, Liu ZJ, Chen YH, Chen HS, Wu YZ, Feng W, Wang DB (2010) Curr Appl Phys 10:77–83

    Article  CAS  Google Scholar 

  57. Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M (2004) J Phys Chem B 108:4818–4822

    Article  CAS  Google Scholar 

  58. Lu T, Chen F (2012) J Comp Chem 33:580–592

    Article  Google Scholar 

  59. Mendizabal F, Lopéz A, Arratia-Pérez R, Zapata-Torres G (2015) Comput theor chem 1070:117–125

    Article  CAS  Google Scholar 

  60. Pastore M, Fantacci S, Angelis FD (2013) J Phys Chem C 117:3685–3700

    Article  CAS  Google Scholar 

  61. Yamaguchi S, Tamao K (1998) J Chem Soc, Dalton Trans 22:3693–3702

    Article  Google Scholar 

  62. Martin RL (2003) J Chem Phys 118:4775–4777

    Article  CAS  Google Scholar 

  63. Ferré N, Filatov M, Huix-Rotllant M (2016) Density-functional methods for excited states. Springer, Berlin

    Book  Google Scholar 

  64. Guido CA, Cortona P, Mennucci B, Adamo C (2013) J Chem Theory Comput 9:3118–3126

    Article  CAS  Google Scholar 

  65. Etienne T, Assfeld X, Monari A (2014) J Chem Theory Comput 10:3896–3905

    Article  CAS  Google Scholar 

  66. Bahers TL, Adamo C, Ciofini I (2011) J Chem Theory Comput 7:2498–2506

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Isfahan University of Technology and computational support from the Sheikh Bahaei National High Performance Computing Center (SBNHPCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Najafi Chermahini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1004 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari Chermahini, Z., Najafi Chermahini, A. Theoretical study on the bridge comparison of TiO2 nanoparticle sensitizers based on phenoxazine in dye-sensitized solar cells. Theor Chem Acc 136, 34 (2017). https://doi.org/10.1007/s00214-017-2063-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2063-5

Keywords

Navigation