Skip to main content

Advertisement

Log in

High power density supercapacitor devices based on nickel foam–coated rGO/MnCo2O4 nanocomposites

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

New nanocomposite electrode material of rGO/MnCo2O4 was freely loaded on flexible substrate on nickel foam and prepared by a simple, cost-effective, and eco-friendly pathway. The results show that the spinel manganese cobaltite (MnCo2O4) with reduced graphene oxide (rGO) nanocomposite forms a uniform deposit and densely covers on the nickel foam (NF). The electrochemical measurements were investigated in three methods, such as cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS). The synergistic effects from rGO and MnCo2O4 deliver outstanding an excellent electrochemical performance that was not realized by any of these components alone. The electroactive material exhibits a high specific capacitance of Csp = 808 F/g at 2 mV/s in 1 M KOH solution. Furthermore, this device delivers an excellent power density of P = 7658 W/kg and a high energy density of E = 15.2 Wh/kg. More importantly, cycling retention is 135% after 1000 charge/discharge cycles. This study proposes that the as-prepared (rGO/MnCo2O4)/nickel foam has a potential application and a promising candidate for energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zha D, Fu Y, Zhang L, Zhu J, Wang X (2018) Design and fabrication of highly open nickel cobalt sulfide nanosheets on Ni foam for asymmetric supercapacitors with high energy density and long cycle-life. J Power Sources 378:31–39

    CAS  Google Scholar 

  2. Xiong X, Ding D, Chen D, Waller G, Bu Y, Wang Z, Liu M (2015) Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy 11:154–161

    CAS  Google Scholar 

  3. Wu F, Gao J, Zhai X, Xie M, Sun Y, Kang H, Tian Q, Qiu H (2019) Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors. Carbon 147:242–251

    CAS  Google Scholar 

  4. Yuksel R, Coskun S, Kalay YE, Unalan HE (2016) Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors. J Power Sources 328:167–173

    CAS  Google Scholar 

  5. Ates M, Garip A, Yoruk O, Bayrak Y, Kuzgun O, Yildirim M (2019) rGO/CuO/PEDOT nanocomposite formation, its characterisation and electrochemical performances for supercapacitors. Plast Rubber Compos 48:168–184

    CAS  Google Scholar 

  6. Ates M, Bayrak Y, Ozkan H, Yoruk O, Yildirim M, Kuzgun O (2019) Synthesis of rGO/TiO2/PEDOT nanocomposites, supercapacitor device performances and equivalent electrical circuit models. J Polym Res 26:49

    Google Scholar 

  7. Ates M, Yildirim M, Kuzgun O, Ozkan H (2019) The synthesis of rGO, rGO/RuO2 and rGO/RuO2/PVK nanocomposites, and their supercapacitors. J Alloys Compd 787:851–864

    CAS  Google Scholar 

  8. Rahmanifar MS, Hemmati M, Noori A, El-Kady MF, Mousavi MF, Richard B, Kaner RB Asymmetric supercapacitors: An alternative to activated carbon negative electrodes based on earth abundant elements. Mater Today Energy 12:26–36

  9. Li Z, Gao S, Mi H, Lei C, Ji C, Xie Z, Yu C, Qiu J (2019) High-energy quasi-solid-state supercapacitors enabled by carbon nanofoam from biowaste and high-voltage inorganic gel electrolyte. Carbon 149:273–280

    CAS  Google Scholar 

  10. Ni L, Wang R, Wang H, Sun C, Sun B, Guo X, Jiang S, Shi Z, Jing W, Zhu L, Qiu S, Zhang Z (2018) Designing nanographitic domains in N-doped porous carbon foam for high performance supercapacitors. Carbon 139:1152–1159

    CAS  Google Scholar 

  11. Sahoo P, Goswami R, Lok S, Shrestha K (2016) Surface oxidized carbon nanotubes uniformly coated with nickel ferrite nanoparticles. J Inorg Organomet Polym Mater 26:1301–1308

    CAS  Google Scholar 

  12. Zhou H, Zhai HJ (2016) A highly flexible solid-state supercapacitor based on the carbon nanotube doped graphene oxide/polypyrrole composites with superior electrochemical performances. Org Electron 37:197–206

    CAS  Google Scholar 

  13. Shrestha LK, Shrestha RG, Hill JP, Tsuruoka T, Ji QM, Nishimura T, Ariga K (2016) Surfactant-triggered nanoarchitectonics of fullerene C60 crystals at a liquid-liquid interface. Langmuir 32(47):12511–12519

    CAS  PubMed  Google Scholar 

  14. Bairi P, Minami K, Nakanishi W, Hill JP, Ariga K, Shrestha LK (2016) Hierarchically structured fullerene C70 cube for sensing volatile aromatic solvent vapors. ACS Nano 10(7):6631–6637

    CAS  PubMed  Google Scholar 

  15. Magana JR, Kolen’ko YV, Deepak FL, Solans C, Shrestha RG, Hill JP, Ariga K, Shrestha LK, Rodriquez-Abreu C (2016) From chromonic self-assembly to hollow carbon nanofibers: efficient materials in supercapacitor and vapor sensing applications. ACS Appl Interfaces 8(45):31231–31238

    CAS  Google Scholar 

  16. Yun SI, Kim SH, Kim DW, Kim YA, Kim BH (2019) Facile preparation and capacitive properties of low-cost carbon nanofibers with ZnO derived from lignin and pitch as supercapacitor electrodes. Carbon 149:637–645

    CAS  Google Scholar 

  17. Fu H, Zhang XD, Fu JZ, Shen GZ, Ding YL, Chen ZJ, Du H (2020) Single-layers of MoS2/graphene nanosheets embedded in activated carbon nanofibers for high-performance supercapacitor. J Alloys Compd 829:154557

    CAS  Google Scholar 

  18. Cao LJ, Zhu SR, Pan BH, Dai XY, Zhao WW, Liu Y, Xie WP, Kuang YB, Liu XQ (2020) Stable and durable laser-induced graphene patterns embedded in polymer substrates. Carbon 163:85–94

    CAS  Google Scholar 

  19. Ranjithkumar R, Arasi SE, Nallamuthu N, Devendran P, Lakshmanan P, Arivarasan A, Kumar MK (2020) Investigation and fabrication of asymmetrical supercapacitor using nanostructured Mn3O4 immobilized carbon nanotube composite. Superlattice Microst 138:106380

    CAS  Google Scholar 

  20. Bao X, Zhang Z, Zhou D (2020) Pseudo-capacitive performance enhancement of α-MnO 2 via in situ coating with polyaniline. Synth Met 260:116271

    CAS  Google Scholar 

  21. Wang G, Huang J, Chen S, Gao Y, Cao D (2011) Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J Power Sources 196:5756–5760

    CAS  Google Scholar 

  22. Olad A, Gharekhani H (2016) Study on the capacitive performance of polyaniline/activated carbon nanocomposite for supercapacitor application. J Polym Res 23:147

    Google Scholar 

  23. Prasanna BP, Avadhani DN, Chaitra K, Nagaraju N, Kathyayini N (2018) Synthesis of polyaniline/MWCNTs by interfacial polymerization for superior hybrid supercapacitance performance. J Polym Res 25(5):123

    Google Scholar 

  24. Wen S, Jung M, Joo OS, il Mho S (2006) EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates. Curr Appl Phys 6:1012–1015

    Google Scholar 

  25. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrog Energy 34:4889–4899

    CAS  Google Scholar 

  26. Si W, Lei W, Han Z, Zhang Y, Hao Q, Xia M (2014) Sensors and actuators B : chemical electrochemical sensing of acetaminophen based on poly(3,4-ethylenedioxythiophene)/graphene oxide composites. Sensors Actuators B Chem 193:823–829

    CAS  Google Scholar 

  27. Ma W, Chen S, Yang S, Chen W, Weng W, Cheng Y, Zhu M (2017) Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon 113:151–158

    CAS  Google Scholar 

  28. Gladge TS, Jadhav AL, Lokhande BJ (2020) Synthesis and electrochemical study of ruthenium influenced copper electrodes prepared by self anodization. J Alloys Compd 824:153860

    Google Scholar 

  29. Tang X, Hou X, Yao L, Hu S, Liu X, Xiang L (2014) Mn-doped ZnFe2O4 nanoparticles with enhanced performances as anode materials for lithium ion batteries. Mater Res Bull 57:127–134

    CAS  Google Scholar 

  30. Saravanakumar B, Ramachandran SP, Ravi G, Ganesh V, Sakunthala A, Yuvakkumar R (2017) Morphology dependent electrochemical capacitor performance of NiMoO4 nanoparticles. Mater Lett 209:1–4

    CAS  Google Scholar 

  31. Kuo SL, Wu NL (2007) Electrochemical capacitor of MnFe2O4 with organic Li-ion electrolyte. Electrochem Solid-State Lett 10(7):A171–A175

    CAS  Google Scholar 

  32. Gao YP, Zhai ZB, Wang QQ, Hou ZQ, Huang KJ (2019) Cycling profile of layered MgAl2O4/reduced graphene oxide composite for asymmetrical supercapacitor. J Colloid Interface Sci 539:38–44

    CAS  PubMed  Google Scholar 

  33. Gao YP, Huang KJ, Zhang CX, Song SS, Wu X (2018) High-performance symmetric supercapacitor based on flower-like zinc molybdate. J Alloys Compd 731:1151–1158

    CAS  Google Scholar 

  34. Gao YP, Huang KJ (2017) NiCo2S4 materials for supercapacitor applications. Chem Asian J 12:1969–1984

    CAS  PubMed  Google Scholar 

  35. Gao Y, Wei Z, Xu J (2020) High-performance asymmetric supercapacitor based on 1T-MoS2 and MgAl-layered double hydroxides. Electrochim Acta 330:135195–135207

    CAS  Google Scholar 

  36. Guo X, Li MG, Liu YQ, Huang YR, Geng S, Yang WW, Yu YS (2020) Hierarchical core-shell electrode with NiWO4 nanoparticles wrapped MnCo2O4 nanowire arrays on Ni foam for high-performance asymmetric supercapacitors. J Colloid Interface Sci 563:405–413

    CAS  PubMed  Google Scholar 

  37. Saravanakumar B, Ravi G, Ganesh V, Guduru RK, Yuvakkumar R (2019) MnCo2O4 nanosphere synthesis for electrochemical applications. Mater Sci Energy Technol 2:130–138

    Google Scholar 

  38. Sahoo S, Naik KK, Rout CS (2015) Electrodeposition of spinel MnCo2O4 nanosheets for supercapacitor applications. Nanotechnology 26:455401

    PubMed  Google Scholar 

  39. Lee HM, Gopi CVVM, Rana PJS, Vinodh R, Kim S, Padma R, Kim HJ (2018) Hierarchical nanostructured MnCo2O4-NiCo2O4 composites as innovative electrodes for supercapacitor applications. New J Chem 42:17190–17194

    CAS  Google Scholar 

  40. Tholkappiyan R, Naveen AN, Sumithra S, Vishista K (2015) Investigation on spinel MnCo2O4 electrode material prepared via controlled and uncontrolled synthesis route for supercapacitor application. J Mater Sci 2015:17

    Google Scholar 

  41. Li J, Xiong S, Li X, Qian Y (2013) A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage propertiest. Nanoscale 5(5):2045–2054

    CAS  PubMed  Google Scholar 

  42. Li L, Zhang YQ, Liu XY, Shi SJ, Zhao XY, Zhang H, Ge X, Cai GF, Gu CD, Wang XL, Tu JP (2014) One-dimension MnCo2O4 nanowire arrays for electrochemical. Electrochim Acta 116:467–474

    CAS  Google Scholar 

  43. Zhao J, Wang G, Cheng K, Ye K, Zhu K, Yan J, Cao D, Wang HE (2020) Growing NiS2 nanosheets on porous carbon microtubes for hybrid sodium-ion capacitors. J Power Sources 451(1):227737

    CAS  Google Scholar 

  44. Hong WL, Lin LY (2019) Studying the substrate effects on energy storage abilities of flexible battery supercapacitor hybrids based on nickel cobalt oxide and nickel cobalt oxide@nickel molybdenum oxide. Electrochim Acta 308:83–90

    CAS  Google Scholar 

  45. Ates M, Bayrak Y, Yoruk O, Caliskan S (2017) Reduced graphene oxide/titanium oxide nanocomposite synthesis via microwave assisted method and supercapacitor behaviors. J Alloys Compd 728:541–551

    CAS  Google Scholar 

  46. Lal MS, Lavanya T, Ramaprabhu S (2019) An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite. Beilstein J Nanotechnol 10:781–793

    CAS  Google Scholar 

  47. Lokhande PE, Chavan US (2019) Materials science for energy technologies nanostructured Ni(OH)2/rGO composite chemically deposited on Ni foam for high performance of supercapacitor applications. Mater Sci Energy Technol 2:52–56

    Google Scholar 

  48. Pu J, Tong Y, Wang S, Sheng E, Wang Z (2014) Nickel-cobalt hydroxide nanosheets arrays on Ni foam for pseudocapacitor applications. J Power Sources 250:250–256

    CAS  Google Scholar 

  49. Shenghai C, Liping S, Fanhao K, Lihua H, Hui Z (2019) Carbon-coated MnCo2O4 nanowire as bifunctional oxygen catalysts for rechargeable Zn-air batteries. J Power Sources 430:25–31

    CAS  Google Scholar 

  50. Meng FY, Yuan YF, Guo SY, Xu YX (2017) NiCo2S4@PPy core-shell nanotube arrays on Ni foam for high-performance supercapacitors. Mater Technol 32:815–822

    Google Scholar 

  51. Zhang Y, Luo L, Zhang Z, Ding Y, Liu S, Deng D, Zhao H, Chen Y (2014) Synthesis of MnCo2O4 nanofibers by electrospinning and calcination: application for a highly sensitive non-enzymatic glucose sensor. J Mater Chem B 2:529–535

    CAS  PubMed  Google Scholar 

  52. Cao X, Yan W, Jin C, Tian J, Ke K, Yang R (2015) Surface modification of MnCo2O4 with conducting polypyrrole as a highly active bifunctional electrocatalyst for oxygen reduction and oxygen evolution reaction. Electrochim Acta 180:788–794

    CAS  Google Scholar 

  53. Jana M, Kumar JS, Khanra P, Samanta P, Koo H, Murmu NC, Kuila T (2016) Superior performance of asymmetric supercapacitor based on reduced graphene oxide-manganese carbonate as positive and sono-chemically reduced graphene oxide as negative electrode materials. J Power Sources 303:222–233

    CAS  Google Scholar 

  54. Liu WW, Bin Yan X, Lang JW, Bin Pu J, Xue QJ (2013) Supercapacitors based on graphene nanosheets using different non-aqueous electrolytes. New J Chem 37:2186–2195

    CAS  Google Scholar 

  55. Shao Y, Wang H, Zhang Q, Li Y (2013) High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes. J Mater Chem C 1:1245–1251

    CAS  Google Scholar 

  56. Zhu N, Liu W, Xue M, Xie Z, Zhao D, Zhang M, Chen J, Cao T (2010) Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries. Electrochim Acta 55:5813–5818

    CAS  Google Scholar 

  57. Amutha B, Sathish M (2015) A 2 V asymmetric supercapacitor based on reduced graphene oxide-carbon nanofiber-manganese carbonate nanocomposite and reduced graphene oxide in aqueous solution. J Solid State Electrochem 19:2311–2320

    CAS  Google Scholar 

  58. Purushothaman KK, Manohara Babu I, Sethuraman B, Muralidharan G (2013) Nanosheet-assembled NiO microstructures for high-performance supercapacitors. ACS Appl Mater Interfaces 5:10767–10773

    CAS  PubMed  Google Scholar 

  59. Zhao Y, Hu L, Zhao S, Wu L (2016) Preparation of MnCo2O4@Ni(OH)2 core–shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv Funct Mater 26:4085–4093

    CAS  Google Scholar 

  60. Xu J, Sun Y, Lu M, Wang L, Zhang J, Qian J, Kim EJ (2017) Fabrication of porous Mn2O3 microsheet arrays on nickel foam as high–rate electrodes for supercapacitors. J Alloys Compd 717:108–115

    CAS  Google Scholar 

  61. Pham VH, Nguyen-Phan TD, Tong X, Rajagopalan B, Chung JS, Dickerson JH (2018) Hydrogenated TiO2@reduced graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications. Carbon 126:135–144

    CAS  Google Scholar 

  62. Zou X, Xiang Q, Hao J, Qiang Y, Xiang B, Zhu SS, Li W (2019) Fabrication of ultra-closely graphene-wrapped Ni foam substrate for supercapacitor electrode by flame induction and electrostatic interaction. J Alloys Compd 791:423–430

    CAS  Google Scholar 

  63. Xu P, Gao Q, Ma L, Li Z, Zhang H, Xiao H, Liang X, Zhang T, Tian X, Liu C (2019) A high surface area N-doped holey graphene aerogel with low charge transfer resistance as high performance electrode of non-flammable thermostable supercapacitor. Carbon 149:452–461

    CAS  Google Scholar 

  64. Xie B, Yu M, Lu L, Feng H, Yang Y, Chen Y, Cui H, Xiao R, Liu J (2019) Pseudocapacitive Co9S8 /graphene electrode for high-rate hybrid supercapacitors. Carbon 141:134–142

    CAS  Google Scholar 

  65. Wu J, Zhou J, Lin Q, Luo L, Lu Q (2019) Ternary Co3O4/NiO/reduced graphene oxide hybrid composites with improved electrochemical properties. Ceram Int 45:15394–15399

    CAS  Google Scholar 

  66. Li B, Tian Z, Li H, Yang Z, Wang Y, Wang X (2019) Self-supporting graphene aerogel electrode intensified by NiCo2S4 nanoparticles for asymmetric supercapacitor. Electrochim Acta 314:32–39

    CAS  Google Scholar 

  67. Rajendiran R, Chinnadurai D, Selvaraj AR, Gunasekaran RK, Kim HJ, Karupannan S, Prabakar K (2019) Nickel self-doped iron oxide/manganese carbonate hierarchical 2D/3D structures for electrochemical energy storage. Electrochim Acta 297:77–86

    CAS  Google Scholar 

  68. Wang Y, Li SS, Sun JL, Zhang YF, Chen HY, Xu CJ (2019) Simple solvothermal synthesis of magnesium cobaltite microflowers as a battery grade material with high electrochemical performances. Ceram Int 45(12):14642–14651

    CAS  Google Scholar 

  69. Ruan C, Li P, Xu J, Xie Y (2020) Electrochemical performance of hybrid membrane of polyaniline layer/full carbon layer coating on nickel foam. Prog Org Coat 139:105455

    CAS  Google Scholar 

  70. Hu CC, Chen JC, Chang KH (2013) Cathodic deposition of Ni(OH)2 and Co(OH)2 for asymmetric supercapacitors: importance of the electrochemical reversibility of redox couples. J Power Sources 221:128–133

    CAS  Google Scholar 

  71. Fang DL, Chen ZD, Liu X, Wu ZF, Zheng CH (2012) Homogeneous growth of nano-sized β-Ni(OH)2 on reduced graphene oxide for high-performance supercapacitors. Electrochim Acta 81:321–329

    CAS  Google Scholar 

  72. Zhang YZ, Cheng T, Wang Y, Lai WY, Pang H, Huang W (2016) A simple approach to boost capacitance: flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation. Adv Mater 28(26):5242

    CAS  PubMed  Google Scholar 

  73. Ates M, Yildirim M (2020) The synthesis of rGO/RuO2, rGO/PANI, RuO2/PANI and rGO/RuO2 /PANI nanocomposites and their supercapacitors. Polym Bull 77:2285–2307

  74. Ates M, Mizrak I, Kuzgun O, Aktas S (2020) Synthesis, characterization, and supercapacitor performances of activated and inactivated rGO/MnO2 and rGO/MnO2/PPy nanocomposites. Ionics. https://doi.org/10.1007/s11581-020-03605-6

  75. Ates M, Kuzgun O (2020) Modified carbon black, CB/MnO2 and CB/MnO2/PPy nanocomposites synthesised by microwave-assisted method for energy storage devices with high electrochemical performances. Plast Rubber Compos. https://doi.org/10.1080/14658011.2020.1753336

  76. Lin F, Yuan M, Chen Y, Huang Y, Lian J, Qiu J, Xu H, Li H, Yuan S, Zhao Y, Cao S Advanced asymmetric supercapacitor based on molybdenum trioxide decorated nickel cobalt oxide nanosheets and three-dimensional alpha-FeOOH/rGO. Electrochim Acta 320:134580

  77. Sefdar B, Rajesh JA, Kang SH, Kim H, Ahn KS (2020) Enhanced capacitive performances and excellent stability of cadmium-sulfide concealed nickel sulfide (Ni3S2/CdS) for electrochemical capacitors. J Alloys Compd 826:154211

    Google Scholar 

  78. Dridi C, Benzarti-Ghédira M, Vocanson F, Ben Chaabane R, Davenas J, Ben Ouada H (2009) Optical and electrical properties of semi-conducting calix[5,9]arene thin films with potential applications in organic electronics. Semicond Sci Technol 24(10):105007

    Google Scholar 

  79. Nakamura T, Homma K, Tachibana K (2011) Impedance spectroscopy of manganite films prepared by metalorganic chemical vapor deposition. J Nanosci Nanotechnol 11:8408–8411

    CAS  PubMed  Google Scholar 

  80. Kumar U, Gaikwad V, Mayyas M, Sahajwalla V, Joshi RK (2018) Extraordinary supercapacitance in activated carbon produced via a sustainable approach. J Power Sources 394:140–147

    CAS  Google Scholar 

  81. Xu P, Ye K, Cao D, Huang J, Liu T, Cheng K, Yin J, Wang G (2014) Facile synthesis of cobalt manganese oxides nanowires on nickel foam with superior electrochemical performance. J Power Sources 268:204–211

    CAS  Google Scholar 

  82. Ghasemi S, Hosseini SR, Boore-talari O (2018) Sonochemical assisted synthesis MnO2/rGO nanohybrid as effective electrode material for supercapacitor. Ultrason Sonochem 40:675–685

    CAS  PubMed  Google Scholar 

  83. Lv Y, Liu A, Che H, Mu J, Guo Z, Zhang X, Bai Y, Zhang Z, Wang G, Pei Z (2018) Three-dimensional interconnected MnCo2O4 nanosheets@MnMoO4 nanosheets core-shell nanoarrays on Ni foam for high-performance supercapacitors. Chem Eng J 336:64–73

    CAS  Google Scholar 

  84. Zheng X, Ye Y, Yang Q, Geng B, Zhang X (2016) Hierarchical structures composed of MnCo2O4@MnO2 core-shell nanowire arrays with enhanced supercapacitor properties. Dalton Trans 45:572–578

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors received financial support from the Ministry of Higher Education and Scientific Research of Tunisia. Achref Chebil has studied in Ates polymer research group between 23 May 2019 and 7 August 2019 in Tekirdag Namik Kemal University, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cherif Dridi or Murat Ates.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebil, A., Kuzgun, O., Dridi, C. et al. High power density supercapacitor devices based on nickel foam–coated rGO/MnCo2O4 nanocomposites. Ionics 26, 5725–5735 (2020). https://doi.org/10.1007/s11581-020-03713-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03713-3

Keywords

Navigation