Skip to main content
Log in

Lignin-based adsorbent for effective removal of toxic heavy metals from wastewater

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Water pollution due to heavy metals is one of the great concerns in the present scenario. Lignin as emergent material has the potential to adsorb the heavy metals from wastewater as even in low concentrations heavy metals are very harmful to living organisms. Researchers are also working on functional (nano) material where lignin is used as an additive for the synthesis of nanomaterials or composite materials. The lignin can be considered as recyclable biosorbents with high adsorption for heavy metals. But the adsorption capacity of lignin material is not superior to that of commercial adsorbent and ion exchange resin materials. To overcome this problem, multifunctional composite materials are used to improve the removal capacity of lignin. The surface properties of lignin can be modified by chemical and physical methods to obtain new materials. This review summarizes the recent advancement in lignin and lignin-based biosorbents in the remediation of heavy metals from wastewater.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.O. Abo, M. Gao, Y. Wang, C. Wu, H. Ma, Q. Wang, Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes. Rev Environ Health 34(1), 57–68 (2019). https://doi.org/10.1515/reveh-2018-0054

    Article  CAS  Google Scholar 

  2. K.E. Achyuthan, A.M. Achyuthan, P.D. Adams, S.M. Dirk, J.C. Harper, B.A. Simmons, A.K. Singh, Supramolecular self-assembled chaos: polyphenolic lignin’s barrier to cost-effective lignocellulosic biofuels. Molecules 15(12), 8641–8688 (2010). https://doi.org/10.3390/molecules15118641

    Article  CAS  Google Scholar 

  3. E. Agrafioti, D. Kalderis, E. Diamadopoulos, Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. J Environ Manag 146, 444–450 (2014). https://doi.org/10.1016/j.jenvman.2014.07.029

    Article  CAS  Google Scholar 

  4. M.M. Alam, A.M. Asiri, M.T. Uddin, M.A. Islam, M.R. Awual, M.M. Rahman, One-step wet-chemical synthesis of ternary ZnO/CuO/Co 3 O 4 nanoparticles for sensitive and selective melamine sensor development. New J Chem 43(12), 4849–4858 (2019). https://doi.org/10.1039/C8NJ06361C

    Article  CAS  Google Scholar 

  5. M.M. Alam, A.M. Asiri, M.T. Uddin, M.A. Islam, M.R. Awual, M.M. Rahman, Detection of uric acid based on doped ZnO/Ag 2 O/Co 3 O 4 nanoparticle loaded glassy carbon electrode. New J Chem 43(22), 8651–8659 (2019). https://doi.org/10.1039/C9NJ01287G

    Article  CAS  Google Scholar 

  6. A.B. Albadarin, C. Mangwandi, H. Ala’a, G.M. Walker, S.J. Allen, M.N. Ahmad, Modelling and fixed bed column adsorption of Cr (VI) onto orthophosphoric acid-activated lignin. Chin J Chem Eng 20(3), 469–477 (2012). https://doi.org/10.1016/S1004-9541(11)60208-5

    Article  CAS  Google Scholar 

  7. F. Amin, F.N. Talpur, A. Balouch, H.I. Afridi, A.A. Khaskheli, Efficient entrapping of toxic Pb (II) ions from aqueous system on a fixed-bed column of fungal biosorbent. Geol Ecol Landscapes 2(1), 39–44 (2018). https://doi.org/10.1080/24749508.2018.1438746

    Article  Google Scholar 

  8. C.W. Armstrong, R.B. Stroube, T. Rubio, E.A. Siudyla, G.B. Miller, Outbreak of fatal arsenic poisoning caused by contaminated drinking water. Arch Environ Health 39(4), 276–279 (1984). https://doi.org/10.1080/00039896.1984.10545849

    Article  CAS  Google Scholar 

  9. T.M. Attina, L. Trasande, Economic costs of childhood lead exposure in low-and middle-income countries. Environ Health Perspect 121(9), 1097–1102 (2013). https://doi.org/10.1289/ehp.1206424

    Article  Google Scholar 

  10. M.R. Awual, M.M. Hasan, A ligand based innovative composite material for selective lead (II) capturing from wastewater. J Mol Liq 294, 111679 (2019). https://doi.org/10.1016/j.molliq.2019.111679

    Article  CAS  Google Scholar 

  11. M.R. Awual, M.M. Hasan, A.M. Asiri, M.M. Rahman, Novel optical composite material for efficient vanadium (III) capturing from wastewater. J Mol Liq 283, 704–712 (2019). https://doi.org/10.1016/j.molliq.2019.03.119

    Article  CAS  Google Scholar 

  12. M.R. Awual, M.M. Hasan, J. Iqbal, A. Islam, M.A. Islam, A.M. Asiri, M.M. Rahman, Naked-eye lead (II) capturing from contaminated water using innovative large-pore facial composite materials. Microchem J 154, 104585 (2020). https://doi.org/10.1016/j.microc.2019.104585

    Article  CAS  Google Scholar 

  13. Awual, M. R., Hasan, M. M., Iqbal, J., Islam, M. A., Islam, A., Khandaker, S., … & Rahman, M. M. (2020). Ligand based sustainable composite material for sensitive nickel (II) capturing in aqueous media. J Environ Chem Eng, 8(1), 103591.https://doi.org/10.1016/j.jece.2019.103591

  14. M.R. Awual, M.M. Hasan, A. Islam, A.M. Asiri, M.M. Rahman, Optimization of an innovative composited material for effective monitoring and removal of cobalt (II) from wastewater. J Mol Liq 298, 112035 (2020). https://doi.org/10.1016/j.molliq.2019.112035

    Article  CAS  Google Scholar 

  15. M.R. Awual, M.M. Hasan, A. Islam, M.M. Rahman, A.M. Asiri, M.A. Khaleque, M.C. Sheikh, Introducing an amine functionalized novel conjugate material for toxic nitrite detection and adsorption from wastewater. J Clean Prod 228, 778–785 (2019). https://doi.org/10.1016/j.jclepro.2019.04.280

    Article  CAS  Google Scholar 

  16. M.R. Awual, T. Yaita, T. Kobayashi, H. Shiwaku, S. Suzuki, Improving cesium removal to clean-up the contaminated water using modified conjugate material. J Environ Chem Eng 8(2), 103684 (2020). https://doi.org/10.1016/j.jece.2020.103684

    Article  CAS  Google Scholar 

  17. N. Azouaou, Z. Sadaoui, A. Djaafri, H. Mokaddem, Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics. J Hazard Mater 184(1–3), 126–134 (2010). https://doi.org/10.1016/j.jhazmat.2010.08.014

    Article  CAS  Google Scholar 

  18. L.F. Ballesteros, J.A. Teixeira, S.I. Mussatto, Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol 7(12), 3493–3503 (2014). https://doi.org/10.1007/s11947-014-1349-z

    Article  CAS  Google Scholar 

  19. Bartczak, P., Klapiszewski, Ł., Wysokowski, M., Majchrzak, I., Czernicka, W., Piasecki, A., … & Jesionowski, T. (2017). Treatment of model solutions and wastewater containing selected hazardous metal ions using a chitin/lignin hybrid material as an effective sorbent. J Environ Manag, 204, 300-310.https://doi.org/10.1016/j.jenvman.2017.08.059

  20. R. Baum, J. Bartram, S. Hrudey, The Flint Water Crisis Confirms That U.S. Drinking Water Needs Improved Risk Management. Environ Sci Technol 50(11), 5436–5437 (2016). https://doi.org/10.1021/acs.est.6b02238

    Article  CAS  Google Scholar 

  21. N.R. Bishnoi, M. Bajaj, N. Sharma, A. Gupta, Adsorption of Cr (VI) on activated rice husk carbon and activated alumina. Bioresour Technol 91(3), 305–307 (2004). https://doi.org/10.1016/S0960-8524(03)00204-9

    Article  CAS  Google Scholar 

  22. V. Boonamnuayvitaya, C. Chaiya, W. Tanthapanichakoon, S. Jarudilokkul, Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay. Sep Purif Technol 35(1), 11–22 (2004). https://doi.org/10.1016/S1383-5866(03)00110-2

    Article  CAS  Google Scholar 

  23. S.H. Botros, M.A.M. Eid, Z.A. Nageeb, Thermal stability and dielectric relaxation of natural rubber/soda lignin and natural rubber/thiolignin composites. J Appl Polym Sci 99(5), 2504–2511 (2006). https://doi.org/10.1002/app.22865

    Article  CAS  Google Scholar 

  24. A. Celik, A. Demirbaş, Removal of heavy metal ions from aqueous solutions via adsorption onto modified lignin from pulping wastes. Energy Sources 27(12), 1167–1177 (2005). https://doi.org/10.1080/00908310490479583

    Article  CAS  Google Scholar 

  25. K.L. Chadha, Coconut research in India—a review. Indian Coconut J 36(9), 13–16 (2003). https://doi.org/10.5923/j.textile.20160506.02

    Article  Google Scholar 

  26. F.S. Chakar, A.J. Ragauskas, Review of current and future softwood kraft lignin process chemistry. Ind Crops Prod 20(2), 131–141 (2004). https://doi.org/10.1016/j.indcrop.2004.04.016

    Article  CAS  Google Scholar 

  27. H.P. Chao, C.C. Chang, A. Nieva, Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column. J Ind Eng Chem 20(5), 3408–3414 (2014). https://doi.org/10.1016/j.jiec.2013.12.027

    Article  CAS  Google Scholar 

  28. T. Chen, Y. Zhang, H. Wang, W. Lu, Z. Zhou, Y. Zhang, L. Ren, Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour Technol 164, 47–54 (2014). https://doi.org/10.1016/j.biortech.2014.04.048

    Article  CAS  Google Scholar 

  29. K.K. Chenab, B. Sohrabi, A. Jafari, S. Ramakrishna, Water treatment: Functional nanomaterials and applications from adsorption to photodegradation. Mater Today Chem 16, 100262 (2020). https://doi.org/10.1016/j.mtchem.2020.100262

    Article  CAS  Google Scholar 

  30. Conrad, S. R., White, S. A., Santos, I. R., & Sanders, C. J. (2021). Assessing pesticide, trace metal, and arsenic contamination in soils and dam sediments in a rapidly expanding horticultural area in Australia.Environ Geochem Health, 1-23. https://doi.org/10.1007/s10653-020-00803-z

  31. G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17(1), 145–155 (2019). https://doi.org/10.1007/s10311-018-0785-9

    Article  CAS  Google Scholar 

  32. T.K. Dan, Development of light weight building bricks using coconut pith. Res Ind 37(1), 11–17 (1992)

    CAS  Google Scholar 

  33. H. Daraei, A. Mittal, M. Noorisepehr, J. Mittal, Separation of chromium from water samples using eggshell powder as a low-cost sorbent: Kinetic and thermodynamic studies. Desalination Water Treat 53(1), 214–220 (2015). https://doi.org/10.1080/19443994.2013.837011

    Article  CAS  Google Scholar 

  34. D. Del Buono, F. Luzi, D. Puglia, Lignin Nanoparticles: A Promising Tool to Improve Maize Physiological, Biochemical, and Chemical Traits. Nanomaterials 11(4), 846 (2021). https://doi.org/10.3390/nano11040846

    Article  CAS  Google Scholar 

  35. A. Demirbas, Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication. J Hazard Mater 109(1–3), 221–226 (2004). https://doi.org/10.1016/j.jhazmat.2004.04.002

    Article  CAS  Google Scholar 

  36. Dizhbite, T., Jashina, L., Dobele, G., Andersone, A., Evtuguin, D., Bikovens, O., Telysheva, G. (2013). Polyoxometalate (POM)-aided modification of lignin from wheat straw biorefinery. Holzforschung, 67(5). doi:https://doi.org/10.1515/hf-2012-0193

  37. W.O. Doherty, P. Mousavioun, C.M. Fellows, Value-adding to cellulosic ethanol: Lignin polymers. Ind Crops Prod 33(2), 259–276 (2011). https://doi.org/10.1016/j.indcrop.2010.10.022

    Article  CAS  Google Scholar 

  38. A. Duval, S. Molina-Boisseau, C. Chirat, Fractionation of lignosulfonates: comparison of ultrafiltration and ethanol solubility to obtain a set of fractions with distinct properties. Holzforschung 69(2), 127–134 (2015). https://doi.org/10.1515/hf-2014-0082

    Article  CAS  Google Scholar 

  39. S. Dworak, H. Rechberger, Mercury throughput of the Austrian manufacturing industry–Discussion of data and data gaps. Resour Conserv Recycl 166, 105344 (2021). https://doi.org/10.1016/j.resconrec.2020.105344

    Article  CAS  Google Scholar 

  40. E. Eren, B. Afsin, Y. Onal, Removal of lead ions by acid activated and manganese oxide-coated bentonite. J Hazard Mater 161(2–3), 677–685 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.020

    Article  CAS  Google Scholar 

  41. Faix O. Fourier Transform Infrared Spectroscopy. In: Lin S.Y., Dence C.W. (eds) Methods in Lignin Chemistry. Springer Series in Wood Science. Springer, Berlin, Heidelberg (1992), PP. 83-109 https://doi.org/10.1007/978-3-642-74065-7_7

  42. M.A. Farajzadeh, A.B. Monji, Adsorption characteristics of wheat bran towards heavy metal cations. Sep Purif Technol 38(3), 197–207 (2004). https://doi.org/10.1016/j.seppur.2003.11.005

    Article  CAS  Google Scholar 

  43. Fernandes Azevedo, B., Barros Furieri, L., Peçanha, F. M., Wiggers, G. A., Frizera Vassallo, P., Ronacher Simões, M., … & Valentim Vassallo, D. Toxic effects of mercury on the cardiovascular and central nervous systems. J. Biomed. Biotechnol.,2012, (2012) https://doi.org/10.1155/2012/949048

  44. Fiamegkos,I., Cordeiro, F., Devesa, V., Ve´lez, D., Robouch, P., Emteborg, H., Leys, H., Cizek-Stroh, A., De La Calle, B. ‘‘IMEP-41: Determination of Inorganic As in Food Collaborative Trial Report’’. Collab. Trial Report. Rep. JRC94325. Geel, Belgium: Joint Research Center, Institute for Reference Materials and Measurements, January 2015.

  45. D.F. Flick, H.F. Kraybill, J.M. Dlmitroff, Toxic effects of cadmium: A review. Environ Res 4(2), 71–85 (1971). https://doi.org/10.1016/0013-9351(71)90036-3

    Article  CAS  Google Scholar 

  46. B. Gao, P. Li, R. Yang, A. Li, H. Yang, Investigation of multiple adsorption mechanisms for efficient removal of ofloxacin from water using lignin-based adsorbents. Sci Rep 9(1), 1–13 (2019). https://doi.org/10.1038/s41598-018-37206-1

    Article  CAS  Google Scholar 

  47. R. Garcia-Valls, T.A. Hatton, Metal ion complexation with lignin derivatives. Chem Eng J 94(2), 99–105 (2003). https://doi.org/10.1016/S1385-8947(03)00007-X

    Article  CAS  Google Scholar 

  48. U.K. Garg, M.P. Kaur, D. Sud, V.K. Garg, Removal of hexavalent chromium from aqueous solution by adsorption on treated sugarcane bagasse using response surface methodological approach. Desalination 249(2), 475–479 (2009). https://doi.org/10.1016/j.desal.2008.10.025

    Article  CAS  Google Scholar 

  49. Y. Ge, Z. Li, Application of lignin and its derivatives in adsorption of heavy metal ions in water: a review. ACS Sustain Chem Eng 6(5), 7181–7192 (2018). https://doi.org/10.1021/acssuschemeng.8b01345

    Article  CAS  Google Scholar 

  50. L. Gong, Y. Kong, H. Wu et al., Sodium Alginate Microspheres Interspersed with Modified Lignin and Bentonite (SA/ML-BT) as a Green and Highly Effective Adsorbent for Batch and Fixed-Bed Column Adsorption of Hg (II). J Inorg Organomet Polym 31, 659–673 (2021). https://doi.org/10.1007/s10904-020-01757-6

    Article  CAS  Google Scholar 

  51. P. Gonugunta, S. Vivekanandhan, A.K. Mohanty, M. Misra, A study on synthesis and characterization of biobased carbon nanoparticles from lignin. World J Nano Sci Eng 2(3), 148–153 (2012). https://doi.org/10.4236/wjnse.2012.23019

    Article  CAS  Google Scholar 

  52. R.J.A. Gosselink, E. de Jong, B. Guran, A. Abächerli, Co-ordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN). Ind Crops Prod 20(2), 121–129 (2004). https://doi.org/10.1016/j.indcrop.2004.04.015

    Article  CAS  Google Scholar 

  53. Guo, D., Yan, Z., Hu, D., Yuan, K., Sha, L., Zhao, H., … & Liu, B. (2021). Preparation and characteristic of high surface area lignin-based porous carbon by potassium tartrate activation.Microporous and Mesoporous Mater, 111340. https://doi.org/10.1016/j.micromeso.2021.111340

  54. A.K. Gupta, S. Mohanty, S.K. Nayak, Synthesis, characterization and application of lignin nanoparticles (LNPs). Mater Focus 3(6), 444–454 (2014). https://doi.org/10.1166/mat.2014.1217

    Article  CAS  Google Scholar 

  55. Hayashi, T. (Ed.), The Science and Lore of the Plant Cell Wall. Biosynthesis, Structure and Function, Brown Walker Press, Boca Raton, 2006

  56. Hergert H, Pye E. Recent history of organosolv pulping. In: APPI Solvent Pulping Symposium, 1992. pp 9–26

  57. Hou, S., Yuan, L., Jin, P., Ding, B., Qin, N., Li, L., … & Deng, Y. (2013). A clinical study of the effects of lead poisoning on the intelligence and neurobehavioral abilities of children. Theor Biol Med Modell, 10(1), 1-9. https://doi.org/10.1186/1742-4682-10-13

  58. R.A. Hutchins, Designing fixed bed adsorbers for wastewater treatment. Am J Chem Eng 80, 133–138 (1973)

    CAS  Google Scholar 

  59. S. Iravani, R.S. Varma, Greener synthesis of lignin nanoparticles and their applications. Green Chemistry 22(3), 612–636 (2020). https://doi.org/10.1039/C9GC02835H

  60. Islam, A., Ahmed, T., Awual, M. R., Rahman, A., Sultana, M., Abd Aziz, A., … & Hasan, M. (2020). Advances in sustainable approaches to recover metals from e-waste-A review.J Clean Prod, 244, 118815. https://doi.org/10.1016/j.jclepro.2019.118815

  61. A. Islam, S.H. Teo, M.R. Awual, Y.H. Taufiq-Yap, Improving the hydrogen production from water over MgO promoted Ni–Si/CNTs photocatalyst. J Clean Prod 238, 117887 (2019). https://doi.org/10.1016/j.jclepro.2019.117887

    Article  CAS  Google Scholar 

  62. A. Jawed, V. Saxena, L.M. Pandey, Engineered nanomaterials and their surface functionalization for the removal of heavy metals: A review. J Water Process Eng 33, 101009 (2020). https://doi.org/10.1016/j.jwpe.2019.101009

    Article  Google Scholar 

  63. N. Jiang, Y. Pu, A.J. Ragauskas, Rapid determination of lignin content via direct dissolution and 1H NMR analysis of plant cell walls. ChemSusChem 3(11), 1285–1289 (2010). https://doi.org/10.1002/cssc.201000120

    Article  CAS  Google Scholar 

  64. Jin, C., Zhang, X., Xin, J., Liu, G., Chen, J., Wu, G., … Kong, Z. (2018). Thiol–Ene Synthesis of Cysteine-Functionalized Lignin for the Enhanced Adsorption of Cu(II) and Pb(II). Ind Eng Chem Res, 57(23), 7872–7880. https://doi.org/10.1021/acs.iecr.8b00823

  65. C. Jin, X. Zhang, J. Xin, G. Liu, G. Wu, Z. Kong, J. Zhang, Clickable Synthesis of 1,2,4-Triazole Modified Lignin-Based Adsorbent for the Selective Removal of Cd(II). ACS Sustain Chem Eng 5(5), 4086–4093 (2017). https://doi.org/10.1021/acssuschemeng.7b00072

    Article  CAS  Google Scholar 

  66. Y. Jin, C. Zeng, Q.-F. Lü, Y. Yu, Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin. Int J Biol Macromol (2018). https://doi.org/10.1016/j.ijbiomac.2018.10.21

    Article  Google Scholar 

  67. Jing, F., Chen, X., Yang, Z., & Guo, B. Heavy metals status, transport mechanisms, sources, and factors affecting their mobility in Chinese agricultural soils. Environmental Earth Sciences, 77(3), (2018) doi:https://doi.org/10.1007/s12665-018-7299-4

  68. F. Juan, Z.H.A.N. Huaiyu, Optimization of synthesis of spherical lignosulphonate resin and its structure characterization. Chin J Chem Eng 16(3), 407–410 (2008). https://doi.org/10.1016/s1004-9541(08)60097-x

    Article  Google Scholar 

  69. R.M. Kamel, A. Shahat, W.H. Hegazy, E.M. Khodier, M.R. Awual, Efficient toxic nitrite monitoring and removal from aqueous media with ligand based conjugate materials. J Mol Liq 285, 20–26 (2019). https://doi.org/10.1016/j.molliq.2019.04.060

    Article  CAS  Google Scholar 

  70. K. Kaya, E. Pehlivan, C. Schmidt, M. Bahadir, Use of modified wheat bran for the removal of chromium (VI) from aqueous solutions. Food Chem 158, 112–117 (2014). https://doi.org/10.1016/j.foodchem.2014.02.107

    Article  CAS  Google Scholar 

  71. S. Khandaker, Y. Toyohara, G.C. Saha, M.R. Awual, T. Kuba, Development of synthetic zeolites from bio-slag for cesium adsorption: Kinetic, isotherm and thermodynamic studies. J Water Process Eng 33, 101055 (2020). https://doi.org/10.1016/j.jwpe.2019.101055

    Article  Google Scholar 

  72. Ł Klapiszewski, K. Siwińska-Stefańska, D. Kołodyńska, Preparation and characterization of novel TiO2/lignin and TiO2-SiO2/lignin hybrids and their use as functional biosorbents for Pb(II). Chem Eng J 314, 169–181 (2017). https://doi.org/10.1016/j.cej.2016.12.114

    Article  CAS  Google Scholar 

  73. Y. Kong, L. Wang, Y. Ge, H. Su, Z. Li, Lignin xanthate resin–bentonite clay composite as a highly effective and low-cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water. J Hazard Mater (2019). https://doi.org/10.1016/j.jhazmat.2019.01.026

    Article  Google Scholar 

  74. Kour, D., Kaur, T., Devi, R., Yadav, A., Singh, M., Joshi, D., … & Saxena, A. K. (2021). Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: Present status and future challenges. Environ Sci Pollut Res, 1-23. https://doi.org/10.1007/s11356-021-13252-7

  75. Kumar, A. (2021). Current and Future Perspective of Microalgae for Simultaneous Wastewater Treatment and Feedstock for Biofuels Production.Chem Afr, 1-27. https://doi.org/10.1007/s42250-020-00221-9

  76. Kumar, A., Kumar, V., & Singh, J. (2019). Role of Fungi in the Removal of Heavy Metals and Dyes from Wastewater by Biosorption Processes. In Recent Advancement in White Biotechnology Through Fungi (pp. 397-418). Springer, Cham. https://doi.org/10.1007/978-3-030-25506-0_16

  77. S.B. Lalvani, T.S. Wiltowski, D. Murphy, L.S. Lalvani, Metal removal from process water by lignin. Environ Technol 18(11), 1163–1168 (1997). https://doi.org/10.1080/09593331808616636

    Article  CAS  Google Scholar 

  78. J. Lehmann, A handful of carbon. Nature 447(7141), 143–144 (2007). https://doi.org/10.1038/447143a

    Article  CAS  Google Scholar 

  79. M. Li, J. Liu, W. Han, Recycling and management of waste lead-acid batteries: A mini-review. Waste Manag Res 34(4), 298–306 (2016). https://doi.org/10.1177/0734242X16633773

    Article  CAS  Google Scholar 

  80. Z. Li, J. Chen, Y. Ge, Removal of lead ion and oil droplet from aqueous solution by lignin-grafted carbon nanotubes. Chem Eng J 308, 809–817 (2017). https://doi.org/10.1016/j.cej.2016.09.126

    Article  CAS  Google Scholar 

  81. Z. Li, Y. Ge, L. Wan, Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media. J Hazard Mater 285, 77–83 (2015). https://doi.org/10.1016/j.jhazmat.2014.11.033

    Article  CAS  Google Scholar 

  82. Li, Z., Ge, Y., Zhang, J., Xiao, D., & Wu, Z. (2019). Chemical Modification of Lignin and Its Environmental Application. In Sustainable Polymer Composites and Nanocomposites (pp. 1345-1364). Springer, Cham https://doi.org/10.1007/978-3-030-05399-4_45

  83. Z. Li, Y. Kong, Y. Ge, Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution. Chem Eng J 270, 229–234 (2015). https://doi.org/10.1016/j.cej.2015.01.123

    Article  CAS  Google Scholar 

  84. F.B. Liang, Y.L. Song, C.P. Huang, J. Zhang, B.H. Chen, Adsorption of hexavalent chromium on a lignin-based resin: equilibrium, thermodynamics, and kinetics. J Environ Chem Eng 1(4), 1301–1308 (2013)

    Article  CAS  Google Scholar 

  85. C. Liu, Y. Li, Y. Hou, Preparation of a novel lignin nanosphere adsorbent for enhancing adsorption of lead. Molecules 24(15), 2704 (2019). https://doi.org/10.3390/molecules24152704

    Article  CAS  Google Scholar 

  86. J. Liu, L. Luo, Y. Hu, F. Wang, X. Zheng, K. Tang, Kinetics and mechanism of thermal degradation of vegetable-tanned leather fiber. J Leather Sci Eng 1(1), 1–13 (2019). https://doi.org/10.1186/s42825-019-0010-z

    Article  Google Scholar 

  87. S.-F. Lo, S.-Y. Wang, M.-J. Tsai, L.-D. Lin, Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chem Eng Res Des 90(9), 1397–1406 (2012). https://doi.org/10.1016/j.cherd.2011.11.020

    Article  CAS  Google Scholar 

  88. V. Lugo-Lugo, C. Barrera-Díaz, F. Ureña-Núñez, B. Bilyeu, I. Linares-Hernández, Biosorption of Cr (III) and Fe (III) in single and binary systems onto pretreated orange peel. J Environ Manag 112, 120–127 (2012). https://doi.org/10.1016/j.jenvman.2012.07.009

    Article  CAS  Google Scholar 

  89. M. Luo, H. Lin, B. Li, Y. Dong, Y. He, L. Wang, A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water. Bioresour Technol 259, 312–318 (2018). https://doi.org/10.1016/j.biortech.2018.03.07

    Article  CAS  Google Scholar 

  90. Ma, Y., Lv, L., Guo, Y., Fu, Y., Shao, Q., Wu, T., … Guo, Z. (2017). Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb (II) ions. Polymer, 128, 12–23. https://doi.org/10.1016/j.polymer.2017.09.009

  91. Ma’ruf, A., Pramudono, B., & Aryanti, N. (2017). Lignin isolation process from rice husk by alkaline hydrogen peroxide: Lignin and silica extracted. In AIP Conference Proceedings (Vol. 1823, No. 1, p. 020013). AIP Publishing LLC. DOI:https://doi.org/10.1063/1.4978086

  92. Z. Mahmood, M. Yameen, M. Jahangeer, M. Riaz, A. Ghaffar, I. Javid, Lignin as natural antioxidant capacity. Lignin Trends Appl (2018). https://doi.org/10.5772/intechopen.73284

    Article  Google Scholar 

  93. G.I. Mantanis, R.A. Young, R.M. Rowell, Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2(1), 1–22 (1995). https://doi.org/10.1007/BF00812768

    Article  CAS  Google Scholar 

  94. A.P. Marín, J.F. Ortuno, M.I. Aguilar, V.F. Meseguer, J. Sáez, M. Lloréns, Use of chemical modification to determine the binding of Cd (II), Zn (II) and Cr (III) ions by orange waste. Biochem Eng J 53(1), 2–6 (2010). https://doi.org/10.1016/j.bej.2008.12.010

    Article  CAS  Google Scholar 

  95. S. Martin, W. Griswold, Human health effects of heavy metals. Environ Sci Technol Briefs Citizens 15, 1–6 (2009)

    Google Scholar 

  96. G. Matta, L. Gjyli, Mercury, lead and arsenic: impact on environment and human health. J Chem Pharm Sci 9, 718–725 (2016)

    CAS  Google Scholar 

  97. Kraft, P., In: Pulp & Paper Manufacture, Vol. 1, McDonald, R. G. (editor), 2nd ed., McGraw-Hill Book Company, New York, 1967, p. 628-725

  98. S.I. Mohammadabadi, V. Javanbakht, Lignin extraction from barley straw using ultrasound-assisted treatment method for a lignin-based biocomposite preparation with remarkable adsorption capacity for lead. Int J Biol Macromol (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.074

    Article  Google Scholar 

  99. Mohammed, A.; Abdullah, A. Scanning electron microscopy (SEM): A review. In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania, 7–9 November 2018; Matache, G., Popescu, A.-M., Hristea, A., Eds.; Hydraulics and Pneumatics Research Institute: Băile Govora, Romania, 2018; pp. 77–85

  100. D. Mohan, C.U. Pittman, P.H. Steele, Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin—a biosorbent. J Colloid Interface Sci 297(2), 489–504 (2006). https://doi.org/10.1016/j.jcis.2005.11.023

    Article  CAS  Google Scholar 

  101. C. Namasivayam, M.V. Sureshkumar, Removal of chromium(VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresour Technol 99(7), 2218–2225 (2008). https://doi.org/10.1016/j.biortech.2007.05.023

    Article  CAS  Google Scholar 

  102. W.W. Ngah, M.M. Hanafiah, Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99(10), 3935–3948 (2008). https://doi.org/10.1016/j.biortech.2007.06.011

    Article  CAS  Google Scholar 

  103. N.A. Nordin, N. Abdul Rahman, A.H. Abdullah, Effective Removal of Pb (II) Ions by Electrospun PAN/Sago Lignin-Based Activated Carbon Nanofibers. Molecules 25(13), 3081 (2020). https://doi.org/10.3390/molecules25133081

    Article  CAS  Google Scholar 

  104. A.E. Ofomaja, E.B. Naidoo, A. Pholosi, Intraparticle diffusion of Cr (VI) through biomass and magnetite coated biomass: A comparative kinetic and diffusion study. S Afr J Chem Eng 32(1), 39–55 (2020). https://doi.org/10.1016/j.sajce.2020.01.005

    Article  Google Scholar 

  105. F. Ogata, E. Nagahashi, H. Miki, C. Saenjum, T. Nakamura, N. Kawasaki, Assessment of Cd(II) adsorption capability and mechanism from aqueous phase using virgin and calcined lignin. Heliyon 6(6), e04298 (2020). https://doi.org/10.1016/j.heliyon.2020.e04298

    Article  Google Scholar 

  106. B.O. Ogunsile, M.O. Bamgboye, Biosorption of Lead (II) onto soda lignin gels extracted from Nypa fruiticans. J Environ Chem Eng 5(3), 2708–2717 (2017). https://doi.org/10.1016/j.jece.2017.05.016

    Article  CAS  Google Scholar 

  107. W.E. Oliveira, A.S. Franca, L.S. Oliveira, S.D. Rocha, Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. J Hazard Mater 152(3), 1073–1081 (2008). https://doi.org/10.1016/j.jhazmat.2007.07.085

    Article  CAS  Google Scholar 

  108. N.C. Papanikolaou, E.G. Hatzidaki, S. Belivanis, G.N. Tzanakakis, A.M. Tsatsakis (2005) Lead toxicity update A brief review. Med Sci Monit ,11(10), RA329-RA336

  109. D. Parajuli, K. Inoue, K. Ohto, T. Oshima, A. Murota, M. Funaoka, K. Makino, Adsorption of heavy metals on crosslinked lignocatechol: a modified lignin gel. React Funct Polym 62(2), 129–139 (2005). https://doi.org/10.1016/j.reactfunctpolym.2004.11.003

    Article  CAS  Google Scholar 

  110. V.R. Parate, M.I. Talib, Utilization of pulse processing waste (Cajanus cajan husk) for developing metal adsorbent: a value-added exploitation of food industry waste. Am J Food Sci Technol 3(1), 1–9 (2015). https://doi.org/10.12691/ajfst-3-1-1

    Article  CAS  Google Scholar 

  111. H. Patel, Fixed-bed column adsorption study: a comprehensive review. Appl Water Sci 9(3), 1–17 (2019). https://doi.org/10.1007/s13201-019-0927-7

    Article  CAS  Google Scholar 

  112. X. Peng, Z. Wu, Z. Li, A bowl-shaped biosorbent derived from sugarcane bagasse lignin for cadmium ion adsorption. Cellulose 27(15), 8757–8768 (2020). https://doi.org/10.1007/s10570-020-03376-3

    Article  CAS  Google Scholar 

  113. W.S. Peternele, A.A. Winkler-Hechenleitner, E.A. Gómez Pineda, Adsorption of Cd(II) and Pb(II) onto functionalized formic lignin from sugar cane bagasse. Bioresour Technol 68(1), 95–100 (1999). https://doi.org/10.1016/s0960-8524(98)00083-2

    Article  CAS  Google Scholar 

  114. Pingali, S. V., Urban, V. S., Heller, W. T., McGaughey, J., O’Neill, H., Foston, M., … Evans, B. R. (2010). Breakdown of Cell Wall Nanostructure in Dilute Acid Pretreated Biomass. Biomacromolecules, 11(9), 2329–2335. https://doi.org/10.1021/bm100455h

  115. D. Politi, D. Sidiras, Wastewater treatment for dyes and heavy metals using modified pine sawdust as adsorbent. Procedia Eng 42, 1969–1982 (2012). https://doi.org/10.1016/j.proeng.2012.07.593

    Article  CAS  Google Scholar 

  116. A.L. Popovic, J.D. Rusmirovic, Z. Velickovic, T. Kovacevic, A. Jovanovic, I. Cvijetic, A.D. Marinkovic, Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres. J Ind Eng Chem 93, 302–314 (2021). https://doi.org/10.1016/j.jiec.2020.10.006

    Article  CAS  Google Scholar 

  117. Y. Pu, S. Cao, A.J. Ragauskas, Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy Environ Sci 4(9), 3154–3166 (2011). https://doi.org/10.1039/C1EE01201K

    Article  CAS  Google Scholar 

  118. L. Qin, Y. Ge, B. Deng, Z. Li, Poly (ethylene imine) anchored lignin composite for heavy metals capturing in water. J Taiwan Inst Chem Eng 71, 84–90 (2017). https://doi.org/10.1016/j.jtice.2016.11.012

    Article  CAS  Google Scholar 

  119. Radotić, K., & Mićić, M. (2016). Methods for extraction and purification of lignin and cellulose from plant tissues. In Sample preparation techniques for soil, plant, and animal samples (pp. 365-376). Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3185-9_26

  120. M.M. Rahman, M.M. Hussain, M.N. Arshad, M.R. Awual, A.M. Asiri, Arsenic sensor development based on modification with (E)-N′-(2-nitrobenzylidine)-benzenesulfonohydrazide: a real sample analysis. New J Chem 43(23), 9066–9075 (2019). https://doi.org/10.1039/C9NJ01567A

    Article  CAS  Google Scholar 

  121. M.M. Rahman, T.A. Sheikh, A.M. Asiri, M.R. Awual, Development of 3-methoxyaniline sensor probe based on thin Ag 2 O@ La 2 O 3 nanosheets for environmental safety. New J Chem 43(11), 4620–4632 (2019). https://doi.org/10.1039/C9NJ00415G

    Article  CAS  Google Scholar 

  122. K. Rajendran, E. Drielak, V.S. Varma, S. Muthusamy, G. Kumar, Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review. Biomass Convers Biorefinery 8(2), 471–483 (2018). https://doi.org/10.1007/s13399-017-0269-3

    Article  CAS  Google Scholar 

  123. D. Rico-García, L. Ruiz-Rubio, L. Pérez-Alvarez, S.L. Hernández-Olmos, G.L. Guerrero-Ramírez, J.L. Vilas-Vilela, Lignin-based hydrogels: Synthesis and applications. Polymers 12(1), 81 (2020). https://doi.org/10.3390/polym12010081

    Article  CAS  Google Scholar 

  124. A.L. Rowbotham, L.S. Levy, L.K. Shuker, Chromium in the environment: an evaluation of exposure of the UK general population and possible adverse health effects. J Toxicol Environ Health B: Crit Rev 3(3), 145–178 (2000). https://doi.org/10.1080/10937400050045255

    Article  CAS  Google Scholar 

  125. Rukari, Tushar, Babita, Alhat. Transmission Electron Microscopy-An Overview IRJIPS 2013: 1​(2);1-7

  126. M. Ruthiraan, N.M. Mubarak, R.K. Thines, E.C. Abdullah, J.N. Sahu, N.S. Jayakumar, P. Ganesan, Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd2+ ions from wastewater. Korean J Chem Eng 32(3), 446–457 (2015). https://doi.org/10.1007/s11814-014-0260-7

    Article  CAS  Google Scholar 

  127. P. Santander, B. Butter, E. Oyarce, M. Yáñez, L.P. Xiao, J. Sánchez, Lignin-based adsorbent materials for metal ion removal from wastewater: A review. Ind Crops Prod 167, 113510 (2021). https://doi.org/10.1016/j.indcrop.2021.113510

    Article  CAS  Google Scholar 

  128. A. Shahat, H.M. Hassan, M.F. El-Shahat, O. El Shahawy, M.R. Awual, Visual nickel (II) ions treatment in petroleum samples using a mesoporous composite adsorbent. Chem Eng J 334, 957–967 (2018). https://doi.org/10.1016/j.cej.2017.10.105

    Article  CAS  Google Scholar 

  129. M. Sharma, J. Singh, C. Baskar, A. Kumar, A comprehensive review on biochar formation and its utilization for wastewater treatment. Pollut Res 37, S1–S18 (2018)

    Google Scholar 

  130. P. Sharma, S. Tripathi, R. Chandra, Highly efficient phytoremediation potential of metal and metalloids from the pulp paper industry waste employing Eclipta alba (L) and Alternanthera philoxeroide (L): Biosorption and pollution reduction. Bioresour Technol 319, 124147 (2021). https://doi.org/10.1016/j.biortech.2020.124147

    Article  CAS  Google Scholar 

  131. Sharma, R., Jasrotia, K., Singh, N., Ghosh, P., Sharma, N. R., Singh, J., … & Kumar, A. (2020). A comprehensive review on hydrothermal carbonization of biomass and its applications. Chem Afr, 3(1), 1-19. https://doi.org/10.1007/s42250-019-00098-3

  132. T.A. Sheikh, M.N. Arshad, M.M. Rahman, A.M. Asiri, H.M. Marwani, M.R. Awual, W.A. Bawazir, Trace electrochemical detection of Ni2+ ions with bidentate N, N′-(ethane-1, 2-diyl) bis (3, 4-dimethoxybenzenesulfonamide)[EDBDMBS] as a chelating agent. Inorg Chim Acta 464, 157–166 (2017). https://doi.org/10.1016/j.ica.2017.05.024

    Article  CAS  Google Scholar 

  133. T.A. Sheikh, M.M. Rahman, A.M. Asiri, H.M. Marwani, M.R. Awual, 4-Hexylresorcinol sensor development based on wet-chemically prepared Co3O4@ Er2O3 nanorods: a practical approach. J Ind Eng Chem 66, 446–455 (2018). https://doi.org/10.1016/j.jiec.2018.06.012

    Article  CAS  Google Scholar 

  134. Y.S. Shen, S.L. Wang, Y.M. Tzou, Y.Y. Yan, W.H. Kuan, Removal of hexavalent Cr by coconut coir and derived chars–the effect of surface functionality. Bioresour Technol 104, 165–172 (2012). https://doi.org/10.1016/j.biortech.2011.10.096

    Article  CAS  Google Scholar 

  135. Shweta, K., Jha, H. (2016). Synthesis and characterization of crystalline carboxymethylated lignin–TEOS nanocomposites for metal adsorption and antibacterial activity. Bioresources and Bioprocessing, 3(1). https://doi.org/10.1186/s40643-016-0107-7

  136. R. Singh, A. Shukla, S. Tiwari, M. Srivastava, A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sustain Energy Rev 32, 713–728 (2014). https://doi.org/10.1016/j.rser.2014.01.051

    Article  CAS  Google Scholar 

  137. Sitko, R., Turek, E., Zawisza, B., Malicka, E., Talik, E., Heimann, J., … Wrzalik, R. (2013). Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans, 42(16), 5682. https://doi.org/10.1039/c3dt33097d

  138. Sjöström, E. Wood chemistry: fundamentals and applications; Academic Press: San Diego, USA, 1993.

  139. S.S. Sonone, S. Jadhav, M.S. Sankhla, R. Kumar, Water Contamination by Heavy Metals and their Toxic Effect on Aquaculture and Human Health through Food Chain. Lett Appl NanoBioSci 10(2), 2148–2166 (2020). https://doi.org/10.33263/LIANBS102.21482166

    Article  Google Scholar 

  140. D. Stewart, Lignin as a base material for materials applications: Chemistry, application and economics. Ind Crops Prod 27(2), 202–207 (2008). https://doi.org/10.1016/j.indcrop.2007.07.008

    Article  CAS  Google Scholar 

  141. S. Sugashini, K.M.M.S. Begum, Preparation of activated carbon from carbonized rice husk by ozone activation for Cr(VI) removal. New Carbon Mater 30(3), 252–261 (2015). https://doi.org/10.1016/s1872-5805(15)60190-1

    Article  CAS  Google Scholar 

  142. K.M.S. Sumathi, S. Mahimairaja, R. Naidu, Use of low-cost biological wastes and vermiculite for removal of chromium from tannery effluent. Bioresour Technol 96(3), 309–316 (2005). https://doi.org/10.1016/j.biortech.2004.04.015

    Article  CAS  Google Scholar 

  143. R. Sun, J. Tomkinson, Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason Sonochem 9(2), 85–93 (2002). https://doi.org/10.1016/S1350-4177(01)00106-7

    Article  CAS  Google Scholar 

  144. X.F. Sun, Z. Jing, P. Fowler, Y. Wu, M. Rajaratnam, Structural characterization and isolation of lignin and hemicelluloses from barley straw. Ind Crops Prod 33(3), 588–598 (2011). https://doi.org/10.1016/j.indcrop.2010.12.005

    Article  CAS  Google Scholar 

  145. Y. Sun, Y. Ma, G. Fang, S. Li, Y. Fu, Synthesis of acid hydrolysis lignin-g-poly-(acrylic acid) hydrogel superabsorbent composites and adsorption of lead ions. BioResources 11(3), 5731–5742 (2016)

    Article  CAS  Google Scholar 

  146. K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng 74, 25–48 (2017). https://doi.org/10.1016/j.jtice.2017.01.024

    Article  CAS  Google Scholar 

  147. W.T. Tan, S.T. Ooi, C.K. Lee, Removal of chromium(VI) from solution by coconut husk and palm pressed fibres. Environ Technol 14(3), 277–282 (1993). https://doi.org/10.1080/09593339309385290

    Article  CAS  Google Scholar 

  148. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metal Toxicity and the Environment. Mol Clin Environ Toxicol, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

  149. V.K. Thakur, M.K. Thakur, Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82, 1–15 (2014). https://doi.org/10.1016/j.jclepro.2014.06.066

    Article  CAS  Google Scholar 

  150. T. Todorciuc, L. Bulgariu, V.I. Popa, Adsorption of Cu (II) from aqueous solution on wheat straw lignin: Equilibrium and kinetic studies. Cellul Chem Technol 49, 439–447 (2015)

    CAS  Google Scholar 

  151. R.L. Tseng, F.C. Wu, R.S. Juang, Characteristics and applications of the Lagergren’s first-order equation for adsorption kinetics. J Taiwan Inst Chem Eng 41(6), 661–669 (2010). https://doi.org/10.1016/j.jtice.2010.01.014

    Article  CAS  Google Scholar 

  152. M. Tumolo, V. Ancona, D. De Paola, D. Losacco, C. Campanale, C. Massarelli, V.F. Uricchio, Chromium pollution in European water, sources, health risk, and remediation strategies: an overview. Int J Environ Res Public Health 17(15), 5438 (2020). https://doi.org/10.3390/ijerph17155438

    Article  CAS  Google Scholar 

  153. A.G. Vishtal, A. Kraslawski, Challenges in industrial applications of technical lignins. BioResources 6(3), 3547–3568 (2011). https://doi.org/10.15376/biores.6.3.3547-3568

    Article  Google Scholar 

  154. A. Wang, Z. Zheng, R. Li, D. Hu, Y. Lu, H. Luo, K. Yan, Biomass-derived porous carbon highly efficient for removal of Pb (II) and Cd (II). Green Energy Environ 4(4), 414–423 (2019). https://doi.org/10.1016/j.gee.2019.05.002

    Article  Google Scholar 

  155. B. Wang, Y.C. Sun, R.C. Sun, Fractionational and structural characterization of lignin and its modification as biosorbents for efficient removal of chromium from wastewater: a review. J Leather Sci Eng 1(1), 1–25 (2019). https://doi.org/10.1186/s42825-019-0003-y

    Article  Google Scholar 

  156. Wang, Q., & Sarkar, J. Pyrolysis behaviors of waste coconut shell and husk biomasses. Towards Energy Sustainability, 111, (2018) https://doi.org/10.2495/EQ-V3-N1-34-43

  157. Wang, Q., Zheng, C., Zhang, J., He, F., Yao, Y., Zhang, T. C., & He, C. Insights into the adsorption of Pb(II) over trimercapto-s-triazine trisodium salt-modified lignin in a wide pH range. Chem Eng J Adv, 100002, (2020) https://doi.org/10.1016/j.ceja.2020.100002

  158. Wang, S., Bai, J., Innocent, M. T., Wang, Q., Xiang, H., Tang, J., & Zhu, M. (2021). Lignin-based carbon fibers: Formation, modification and potential applications. Green Energy Environ. https://doi.org/10.1016/j.gee.2021.04.006

  159. X. Wang, J. Xie, H. Zhang, W. Zhang, S. An, S. Chen, C. Luo, Determining the lignin distribution in plant fiber cell walls based on chemical and biological methods. Cellulose 26(7), 4241–4252 (2019). https://doi.org/10.1007/s10570-019-02384-2

    Article  CAS  Google Scholar 

  160. Wang, Z., Huang, W., Bin, P., Zhang, X., & Yang, G. (2018). Preparation of quaternary amine-grafted organosolv lignin biosorbent and its application in the treatment of hexavalent chromium polluted water. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.12.08

  161. A.L. Wani, A. Ara, J.A. Usmani, Lead toxicity: a review. Interdiscip Toxicol 8(2), 55–64 (2015). https://doi.org/10.1515/intox-2015-0009

    Article  CAS  Google Scholar 

  162. F. Wu, L. Chen, P. Hu, Y. Wang, J. Deng, B. Mi, Industrial alkali lignin-derived biochar as highly efficient and low-cost adsorption material for Pb (II) from aquatic environment. Bioresour Technol 322, 124539 (2021). https://doi.org/10.1016/j.biortech.2020.124539

    Article  CAS  Google Scholar 

  163. Y. Wu, S. Zhang, X. Guo, H. Huang, Adsorption of chromium (III) on lignin. Bioresour Technol 99(16), 7709–7715 (2008)

    Article  CAS  Google Scholar 

  164. D. Xiao, W. Ding, J. Zhang, Y. Ge, Z. Wu, Z. Li, Fabrication of a versatile lignin-based nano-trap for heavy metal ion capture and bacterial inhibition. Chem Eng J 358, 310–320 (2019). https://doi.org/10.1016/j.cej.2018.10.037

    Article  CAS  Google Scholar 

  165. F. Xu, J.X. Sun, R. Sun, P. Fowler, M.S. Baird, Comparative study of organosolv lignins from wheat straw. Ind Crops Prod 23(2), 180–193 (2006). https://doi.org/10.1016/j.indcrop.2005.05.008

    Article  CAS  Google Scholar 

  166. F. Xu, T.-T. Zhu, Q.-Q. Rao, S.-W. Shui, W.-W. Li, H.-B. He, R.-S. Yao, Fabrication of mesoporous lignin-based biosorbent from rice straw and its application for heavy-metal-ion removal. J Environ Sci 53, 132–140 (2017). https://doi.org/10.1016/j.jes.2016.03.026

    Article  CAS  Google Scholar 

  167. J. Xu, S. Zhu, P. Liu, W. Gao, J. Li, L. Mo, Adsorption of Cu(ii) ions in aqueous solution by aminated lignin from enzymatic hydrolysis residues. RSC Adv 7(71), 44751–44758 (2017). https://doi.org/10.1039/c7ra06693g

    Article  CAS  Google Scholar 

  168. Z. Xu, J.G. Cai, B.C. Pan, Mathematically modeling fixed-bed adsorption in aqueous systems. J Zhejiang Univ Sci A 14(3), 155–176 (2013). https://doi.org/10.1631/jzus.A1300029

    Article  CAS  Google Scholar 

  169. R.A. Young, Structure, swelling and bonding of cellulose fibers, in Cellulose: Structure, Modification, and Hydrolysis. ed. by R.A. Young, R.M. Rowell (Wiley & Sons, New York, 1986), pp. 91–128

    Google Scholar 

  170. H. Yu, J. Wang, J.X. Yu, Y. Wang, R.A. Chi, Effects of surface modification on heavy metal adsorption performance and stability of peanut shell and its extracts of cellulose, lignin, and hemicellulose. Environ Sci Pollut Res 27(21), 26502–26510 (2020). https://doi.org/10.1007/s11356-020-09055-x

    Article  CAS  Google Scholar 

  171. Zhang, D., Wang, L., Zeng, H., baker, rhimi, & Wang, C. (2020). Novel polyethyleneimine functionalized chitosan-lignin composite sponge with nanowall-network structures for fast and efficient removal of Hg(II) ions from aqueous solution. Environ Sci: Nano. https://doi.org/10.1039/c9en01368g

  172. Zhang, X., Li, Y., & Hou, Y. (2019a). Preparation of magnetic polyethylenimine lignin and its adsorption of Pb(II). Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.09.061

  173. Zhang, Y., Ni, S., Wang, X., Zhang, W., Lagerquist, L., Qin, M., … & Fatehi, P. (2019b). Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles. Chem Eng J, 372, 82-91. https://doi.org/10.1016/j.cej.2019.04.111

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the preparation of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ajay Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

B, R.V., Barman, P., Kadam, R. et al. Lignin-based adsorbent for effective removal of toxic heavy metals from wastewater. emergent mater. 5, 923–943 (2022). https://doi.org/10.1007/s42247-021-00311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00311-5

Keywords

Navigation