Skip to main content

Advertisement

Log in

A review on sustainable recycling technologies for lithium-ion batteries

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Due to increasing environmental awareness, tightening regulations and the need to meet the climate obligations under the Paris Agreement, the production and use of electric vehicles has grown greatly. This growth has two significant impacts on the environment, with the increased depletion of natural resources used for the production of the lithium-ion batteries for these electric vehicles and disposal of end-of-life lithium-ion batteries. In particular, when end-of-life lithium-ion batteries are incorrectly landfilled, pollution to groundwater and soil occurs. Therefore, sustainable recycling technologies must be implemented to construct a cyclic economy for the lithium-ion battery market and help alleviate the severity of these environmental consequences. The majority of current recycling methods involve energy-intensive pyrometallurgy, whereas hydrometallurgy techniques pose a viable alternative with promising advances at lab scale that can adapt with the evolution of new mixed cathode chemistries. As reviewed in this work, a combination of pre-treatment and hydrometallurgical processes was identified as a potential mechanism that could meet this criterion, which focuses on the recovered economic value and cumulative environmental benefits. Furthermore, automation of the pre-treatment process and mechanisms for electrolyte recovery were identified as potential opportunities for future works. Here, we evaluate the opportunities for sustainable recycling technologies for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Y. Hu, Y. Yu, K. Huang, L. Wang, Development tendency and future response about the recycling methods of spent lithium-ion batteries based on bibliometrics analysis. J. Energy Storage 27, 101111 (2020)

    Article  Google Scholar 

  2. IEA. Global EV Outlook (Technical Report, 2020) https://www.iea.org/reports/global-ev-outlook-2020. Accessed 10 December 2020

  3. K.M. Winslow, S.J. Laux, T.G. Townsend, A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour. Conserv. Recycl. 129, 263–277 (2018)

    Article  Google Scholar 

  4. G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, P. Anderson, Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019)

    Article  CAS  Google Scholar 

  5. Y. Shi, G. Chen, Z. Chen, Effective regeneration of LiCoO2from spent lithium-ion batteries: a direct approach towards high-performance active particles. Green Chem. 20(4), 851–862 (2018)

    Article  CAS  Google Scholar 

  6. MBIE. Energy in New Zealand 2020. https://www.mbie.govt.nz/building-and-energy/energy-and-natural-resources/energy-statistics-and-modelling/energy-publications-and-technical-papers/energy-in-new-zealand. Accessed 10 December 2020

  7. Vector. New energy futures paper: batteries (Technical Addendum. 2019). https://blob-static.vector.co.nz/blob/vector/media/vector/vector_new_energy_futures_paper_batteries_technical_addendum.pdf. Accessed 10 December 2020

  8. L. Gaines, K. Richa, J. Spangenberger, MRS Energy & Sustainability 5, e14 (2018)

    Article  Google Scholar 

  9. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, M. Maaza, Rice Husks As A Sustainable Source Of High Quality Nanostructured Silica For High Performance Li-Ion Battery Requital By Sol-Gel Method – A Review. Adv. Mater. Lett. 7(9), 684–696 (2016)

    Article  CAS  Google Scholar 

  10. S. Kim, M. Hankel, W. Cha, G. Singh, J.M. Lee, I.Y. Kim, A. Vinu, Theoretical and experimental investigations of mesoporous C3N5/MoS2 hybrid for lithium and sodium ion batteries. Nano Energy 72, 104702 (2020)

    Article  CAS  Google Scholar 

  11. T. Kesavan, T. Partheeban, M. Vivekanantha, N. Prabu, M. Kundu, P. Selvarajan, S. Umapathy, A. Vinu, M. Sasidharan, Design of P-Doped Mesoporous Carbon Nitrides as High-Performance Anode Materials for Li-Ion Battery. ACS Appl. Mater. Interfaces 12(21), 24007–24018 (2020)

    Article  CAS  Google Scholar 

  12. P.S. Murphin Kumar, A.H. Al-Muhtaseb, G. Kumar, A. Vinu, W. Cha, et al., Piper longumExtract-Mediated Green Synthesis of Porous Cu2O:Mo Microspheres and Their Superior Performance as Active Anode Material in Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 8(38), 14557–14567 (2020)

    Article  CAS  Google Scholar 

  13. I. Buchmann (Battery University: Coalescent design; 2020) https://batteryuniversity.com/learn/article/bu_808c_coulombic_and_energy_efficiency_with_the_battery. Accessed 10 December 2020

  14. M. Aaltonen, C. Peng, B. Wilson, M. Lundström, Leaching of Metals from Spent Lithium-Ion Batteries. Recycling 2, 20 (2017)

    Article  Google Scholar 

  15. T. Or, S.W. Gourley, K. Kaliyappan, A. Yu, Z. Chen, Carbon Energy 2, 6–43 (2020)

    Article  CAS  Google Scholar 

  16. J. Heelan, E. Gratz, Z. Zheng, Q. Wang, M. Chen, D. Apelian, Y. Wang, Current and Prospective Li-Ion Battery Recycling and Recovery Processes. JOM 68(10), 2632–2638 (2016)

    Article  CAS  Google Scholar 

  17. Y. Matsuda, M. Morita, F. Tachihara, Conductivity of Lithium Salts in the Mixed Systems of High Permittivity Solvents and Low Viscosity Solvents. Bull. Chem. Soc. Jpn. 59(6), 1967–1973 (1986)

    Article  CAS  Google Scholar 

  18. A. Chagnes, B. Pospiech, J. Chem, A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. Technol. Biotechnol. 88(7), 1191–1199 (2013)

    Article  CAS  Google Scholar 

  19. J. Nan, D. Han, X. Zuo, Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. J. Power Sources 152, 278–284 (2005)

    Article  CAS  Google Scholar 

  20. J. Christensen, J. Newman, Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293–319 (2006)

    Article  CAS  Google Scholar 

  21. D. Horn, J. Zimmermann, A. Gassmann, R. Stauber, O. Gutfleisch, Battery recycling: focus on Li-ion batteries. Modern battery engineering: a comprehensive introduction. World Sci., 223 (2019)

  22. J. Ordoñez, E. Gago, A. Girard, Renew. Sust. Energ. Rev. 60, 195–205 (2016)

    Article  CAS  Google Scholar 

  23. M.O. Ramoni, H.-C. Zhang, End-of-life (EOL) issues and options for electric vehicle batteries. Clean Techn. Environ. Policy 15(6), 881–891 (2013)

    Article  CAS  Google Scholar 

  24. S. King, N.J. Boxall, J. Clean. Prod. 215, 1279–1287 (2019)

    Article  Google Scholar 

  25. MFE. (Legal Frame Work for Waste 2020) https://www.mfe.govt.nz/waste/waste-strategy-and-legislation/legal-framework-waste. Accessed 10 December 2020

  26. J. Zhang, J. Hu, W. Zhang, Y. Chen, C. Wang, J. Clean. Prod. 204, 437–446 (2018)

    Article  CAS  Google Scholar 

  27. L. Ahllöf, M. Romare, A. Wu, Mapping of lithium-ion batteries for vehicles: a study of their fate in the Nordic countries (Nordic Council of Ministers; 2019), pp. 54

  28. E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang, Y. Yao, R. Chen, F. Wu, Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem. Rev. 120, 7020–7063 (2020)

    Article  CAS  Google Scholar 

  29. J.F. Peters, M. Baumann, B. Zimmermann, J. Braun, M. Weil, The environmental impact of Li-Ion batteries and the role of key parameters – A review. Renew. Sust. Energ. Rev. 67, 491–506 (2017)

    Article  CAS  Google Scholar 

  30. B. Oberle, S. Bringezu, S. Hatfield-Dodds, S. Hellweg, H. Schandl, J. Clement, et al., Global resources outlook 2019: natural resources for the future we want. https://www.resourcepanel.org/reports/global-resources-outlook. Accessed 10 December 2020

  31. S. Castillo, F. Ansart, C. Laberty-Robert, J. Portal, Advances in the recovering of spent lithium battery compounds. J. Power Sources 112(1), 247–254 (2002)

    Article  CAS  Google Scholar 

  32. D. Bernhardt, I. Reilly, Mineral commodity summaries (US Geological Survey, Reston, 2016), pp. 42–43 https://prd-wret.s3-us-west-.amazonaws.com/assets/palladium/production/atoms/files/mcs2019_all.pdf. Accessed 10 December 2020

  33. X. Wang, G. Gaustad, C.W. Babbitt, Waste Manag. 51, 204–213 (2016)

    Article  CAS  Google Scholar 

  34. L. Li, J. Ge, R. Chen, F. Wu, S. Chen, X. Zhang, Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manag. 30(12), 2615–2621 (2010)

    Article  CAS  Google Scholar 

  35. J. Nan, D. Han, M. Yang, M. Cui, X. Hou, Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries. Hydrometallurgy 84(1-2), 75–80 (2006)

    Article  CAS  Google Scholar 

  36. I. Weiguang, Z. Wang, H. Cao, Y. Sun, Y. Zhang, Z. Sun, CS Sustain. Chem. Eng. 6(2), 1504–1521 (2018)

    Article  CAS  Google Scholar 

  37. S. Barik, G. Prabaharan, L. Kumar, J. Clean. Prod. 147, 37–43 (2017)

    Article  CAS  Google Scholar 

  38. X. Zheng, Z. Zhu, X. Lin, Y. Zhang, Y. He, H. Cao, Z. Sun, A Mini-Review on Metal Recycling from Spent Lithium Ion Batteries. Engineering 4(3), 361–370 (2018)

    Article  CAS  Google Scholar 

  39. J. Marshall, D. Gastol, R. Sommerville, B. Middleton, V. Goodship, E. Kendrick, Disassembly of Li Ion Cells—Characterization and Safety Considerations of a Recycling Scheme. Metals 10(6), 773 (2020)

    Article  CAS  Google Scholar 

  40. J. Xiao, J. Guo, L. Zhan, Z. Xu, A cleaner approach to the discharge process of spent lithium ion batteries in different solutions. J. Clean. Prod. 255, 120064 (2020)

    Article  CAS  Google Scholar 

  41. P. Meshram, B. Pandey, T. Mankhand, Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching. Chem. Eng. J. 281, 418–427 (2015)

    Article  CAS  Google Scholar 

  42. C. Herrmann, A. Raatz, M. Mennenga, J. Schmitt, S. Andrew, Assessment of automation potentials for the disassembly of automotive lithium ion battery systems. Leveraging Technology for a Sustainable (World: Springer); pp. 149-54 (2012)

  43. L. Li, P. Zheng, T. Yang, R. Sturges, M.W. Ellis, Z. Li, JOM. 71(12), 4457–4464 (2019)

    Article  CAS  Google Scholar 

  44. K. He, Z.-Y. Zhang, L. Alai, F.-S. Zhang, J. Hazard, Mater. 375, 43–51 (2019)

    CAS  Google Scholar 

  45. M. Grützke, X. Mönnighoff, F. Horsthemke, V. Kraft, M. Winter, S. Nowak, Extraction of lithium-ion battery electrolytes with liquid and supercritical carbon dioxide and additional solvents. RSC Adv. 5(54), 43209–43217 (2015)

    Article  CAS  Google Scholar 

  46. S. Nowak, M. Winter, The Role of Sub- and Supercritical CO2 as “Processing Solvent” for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes. Molecules 22(3), 403 (2017)

    Article  CAS  Google Scholar 

  47. A. Sonoc, J. Jeswiet, V.K. Soo, Opportunities to Improve Recycling of Automotive Lithium Ion Batteries. Procedia CIRP 29, 752–757 (2015)

    Article  Google Scholar 

  48. P. Ribière, S. Grugeon, M. Morcrette, S. Boyanov, S. Laruelle, G. Marlair, Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ. Sci. 5(1), 5271–5280 (2012)

    Article  Google Scholar 

  49. M.M. Archuleta, Toxicity of materials used in the manufacture of lithium batteries. J. Power Sources 54(1), 138–142 (1995)

    Article  CAS  Google Scholar 

  50. Y. He, T. Zhang, F. Wang, G. Zhang, W. Zhang, J. Wang, J. Clea, Prod. 143, 319–325 (2017)

    CAS  Google Scholar 

  51. F. Wang, T. Zhang, Y. He, Y. Zhao, S. Wang, G. Zhang, et al., J. Clean. Prod. 185, 646–652 (2018)

    Article  CAS  Google Scholar 

  52. J. Yu, Y. He, Z. Ge, H. Li, W. Xie, S. Wang, A promising physical method for recovery of LiCoO 2 and graphite from spent lithium-ion batteries: Grinding flotation. Sep. Purif. Technol. 190, 45–52 (2018)

    Article  CAS  Google Scholar 

  53. J. Xu, H. Thomas, R.W. Francis, K.R. Lum, J. Wang, B. Liang, A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 177(2), 512–527 (2008)

    Article  CAS  Google Scholar 

  54. L. Li, E. Fan, Y. Guan, X. Zhang, Q. Xue, L. Wei, F. Wu, R. Chen, Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System. ACS Sustain. Chem. Eng. 5(6), 5224–5233 (2017)

    Article  CAS  Google Scholar 

  55. S. Amarakoon, J. Smith, B. Segal, EPA (2013). https://archive.epa.gov/epa/sites/production/files/2014-01/documents/lithium_batteries_lca.pdf. Accessed 10 December 2020 \

  56. X. Zheng, W. Gao, X. Zhang, M. He, X. Lin, H. Cao, Y. Zhang, Z. Sun, Spent lithium-ion battery recycling – Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Manag. 60, 680–688 (2017)

    Article  CAS  Google Scholar 

  57. S. Virolainen, M.F. Fini, A. Laitinen, T. Sainio, Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co. Sep. Purif. Technol. 179, 274–282 (2017)

    Article  CAS  Google Scholar 

  58. Y. Yang, S. Xu, Y. He, Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes. Waste Manag. 64, 219–227 (2017)

    Article  CAS  Google Scholar 

  59. X. Chen, B. Fan, L. Xu, T. Zhou, J. Kong, J. Clean. Prod. 112, 3562–3570 (2016)

    Article  CAS  Google Scholar 

  60. E.G. Pinna, M.C. Ruiz, M.W. Ojeda, M.H. Rodriguez, Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors. Hydrometallurgy 167, 66–71 (2017)

    Article  CAS  Google Scholar 

  61. M. Joulié, R. Laucournet, E. Billy, Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries. J. Power Sources 247, 551–555 (2014)

    Article  CAS  Google Scholar 

  62. Y. Xin, X. Guo, S. Chen, J. Wang, F. Wu, B. Xin, J. Clean. Prod. 116, 249–258 (2016)

    Article  CAS  Google Scholar 

  63. P. Zhang, T. Yokoyama, O. Itabashi, T.M. Suzuki, K. Inoue, Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy 47(2-3), 259–271 (1998)

    Article  CAS  Google Scholar 

  64. L.-P. He, S.-Y. Sun, Y.-Y. Mu, X.-F. Song, J.-G. Yu, Recovery of Lithium, Nickel, Cobalt, and Manganese from Spent Lithium-Ion Batteries Usingl-Tartaric Acid as a Leachant. ACS Sustain. Chem. Eng. 5(1), 714–721 (2017)

    Article  CAS  Google Scholar 

  65. W. Lv, Z. Wang, H. Cao, X. Zheng, W. Jin, Y. Zhang, Z. Sun, A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride. Waste Manag. 79, 545–553 (2018)

    Article  CAS  Google Scholar 

  66. X. Zhang, L. Li, E. Fan, Q. Xue, Y. Bian, F. Wu, R. Chen, Toward sustainable and systematic recycling of spent rechargeable batteries. Chem. Soc. Rev. 47(19), 7239–7302 (2018)

    Article  CAS  Google Scholar 

  67. P. Liu, L. Xiao, Y. Chen, Y. Tang, J. Wu, H. Chen, Recovering valuable metals from LiNixCoyMn1-x-yO2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching. J. Alloys Compd. 783, 743–752 (2019)

    Article  CAS  Google Scholar 

  68. R. Sattar, S. Ilyas, H.N. Bhatti, A. Ghaffar, Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries. Sep. Purif. Technol. 209, 725–733 (2019)

    Article  CAS  Google Scholar 

  69. L. Sun, K. Qiu, J. Hazard, Mater. 194, 378–384 (2011)

    CAS  Google Scholar 

  70. S.G. Zhu, W.-Z. He, G.-M. Li, Z. Xu, X.-J. Zhang, J.-W. Huang, Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation. Trans. Nonferrous Metals Soc. China 22(9), 2274–2281 (2012)

    Article  CAS  Google Scholar 

  71. B. Swain, J. Jeong, J.-C. Lee, G.-H. Lee, J.-S. Sohn, Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. J. Power Sources 167(2), 536–544 (2007)

    Article  CAS  Google Scholar 

  72. J. Kang, G. Senanayake, J. Sohn, S.M. Shin, Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy 100(3-4), 168–171 (2010)

    Article  CAS  Google Scholar 

  73. S.M. Shin, N.H. Kim, J.S. Sohn, D.H. Yang, Y.H. Kim, Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79(3-4), 172–181 (2005)

    Article  CAS  Google Scholar 

  74. D.P. Mantuano, G. Dorella, R.C.A. Elias, M.B. Mansur, Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid–liquid extraction with Cyanex 272. J. Power Sources 159(2), 1510–1518 (2006)

    Article  CAS  Google Scholar 

  75. G. Dorella, M.B. Mansur, A study of the separation of cobalt from spent Li-ion battery residues. J. Power Sources 170(1), 210–215 (2007)

    Article  CAS  Google Scholar 

  76. J. Li, X. Li, Q. Hu, Z. Wang, J. Zheng, L. Wu, L. Zhang, Study of extraction and purification of Ni, Co and Mn from spent battery material. Hydrometallurgy 99(1-2), 7–12 (2009)

    Article  CAS  Google Scholar 

  77. L. Li, Y. Bian, X. Zhang, Y. Guan, E. Fan, F. Wu, R. Chen, Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. Waste Manag. 71, 362–371 (2018)

    Article  CAS  Google Scholar 

  78. B. Musariri, G. Akdogan, C. Dorfling, S. Bradshaw, Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries. Min. Eng. 137, 108–117 (2019)

    Article  CAS  Google Scholar 

  79. X. Chen, B. Xu, T. Zhou, D. Liu, H. Hu, S. Fan, Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries. Sep. Purif. Technol. 144, 197–205 (2015)

    Article  CAS  Google Scholar 

  80. W. Gao, J. Song, H. Cao, X. Lin, X. Zhang, X. Zheng, Y. Zhang, Z. Sun, Selective recovery of valuable metals from spent lithium-ion batteries – Process development and kinetics evaluation. J. Clean. Prod. 178, 833–845 (2018)

    Article  CAS  Google Scholar 

  81. C.K. Lee, K.I. Rhee, Preparation of LiCoO2 from spent lithium-ion batteries. J. Power Sources 109(1), 17–21 (2002)

    Article  CAS  Google Scholar 

  82. L. Li, R. Chen, F. Sun, F. Wu, J. Liu, Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process. Hydrometallurgy 108(3-4), 220–225 (2011)

    Article  CAS  Google Scholar 

  83. L. Zhuang, C. Sun, T. Zhou, H. Li, A. Dai, Recovery of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode materials of spent Li-ion batteries using mild mixed acid as leachant. Waste Manag. 85, 175–185 (2019)

    Article  CAS  Google Scholar 

  84. J. Guan, Y. Li, Y. Guo, R. Su, G. Gao, H. Song, H. Yuan, B. Liang, Z. Guo, Mechanochemical Process Enhanced Cobalt and Lithium Recycling from Wasted Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 5(1), 1026–1032 (2017)

    Article  CAS  Google Scholar 

  85. C. Peng, F. Liu, Z. Wang, B.P. Wilson, M. Lundström, Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system. J. Power Sources 415, 179–188 (2019)

    Article  CAS  Google Scholar 

  86. L. Brückner, J. Frank, T. Elwert, Industrial Recycling of Lithium-Ion Batteries—A Critical Review of Metallurgical Process Routes. Metals 10, 1107 (2020)

    Article  CAS  Google Scholar 

  87. J. Myoung, Y. Jung, J. Lee, Y. Tak, J. Power Sources 112(2), 639–642 (2002)

    Article  CAS  Google Scholar 

  88. Y. Yang, S. Lei, S. Song, W. Sun, L. Wang, Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries. Waste Manag. 102, 131–138 (2020)

    Article  CAS  Google Scholar 

  89. M.K. Tran, M.T.F. Rodrigues, K. Kato, G. Babu, P.M. Ajayan, Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat. Energy 4, 339–345 (2019)

    Article  CAS  Google Scholar 

  90. S. Wang, Z. Zhang, Z. Lu, Z. Xu, Green Chem. 22, 4473–4482 (2020)

    Article  CAS  Google Scholar 

  91. M.J. Roldán-Ruiz, M.L. Ferrer, M.C. Gutiérrez, F. del Monte, Highly Efficient p-Toluenesulfonic Acid-Based Deep-Eutectic Solvents for Cathode Recycling of Li-Ion Batteries. ACS Sustain. Chem. Eng. 8, 5437–5445 (2020)

    Article  CAS  Google Scholar 

  92. A. Alhadid, L. Mokrushina, M. Minceva, Design of Deep Eutectic Systems: A Simple Approach for Preselecting Eutectic Mixture Constituents. Molecules 25, 1077 (2020)

    Article  CAS  Google Scholar 

  93. E.L. Smith, A.P. Abbott, K.S. Ryder, Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 114, 11060–11082 (2014)

    Article  CAS  Google Scholar 

  94. D. Mishra, D.J. Kim, D. Ralph, J.-G. Ahn, Y.H. Rhee, Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag. 28(2), 333–338 (2008)

    Article  CAS  Google Scholar 

  95. N. Bahaloo-Horeh, S.M. Mousavi, Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger. Waste Manag. 60, 666–679 (2017)

    Article  CAS  Google Scholar 

  96. H. Pinegar, Y.R. Smith, Recycling of End-of-Life Lithium Ion Batteries, Part I: Commercial Processes. J. Sustainable Metallurgy 5, 402–416 (2019)

    Article  Google Scholar 

  97. R.C. Wang, Y.C. Lin, S.H. Wu, A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy 99(3-4), 194–201 (2009)

    Article  CAS  Google Scholar 

  98. S. Dhiman, B. Gupta, J. Clean. Prod. 225, 820–832 (2019)

    Article  CAS  Google Scholar 

  99. W. Schulz, L. Bray, Solvent Extraction Recovery of Byproduct137Cs and90Sr from HNO3Solutions—A Technology Review and Assessment. Sep. Sci. Technol. 22(2-3), 191–214 (1987)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Vivian Fang and Dr. Peter Murmu are acknowledged for helpful discussions and assistance with figures.

Funding

This work was funded by the MacDiarmid Institute for Advanced Materials and Nanotechnology.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors.

Corresponding author

Correspondence to John Kennedy.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kader, Z.A., Marshall, A. & Kennedy, J. A review on sustainable recycling technologies for lithium-ion batteries. emergent mater. 4, 725–735 (2021). https://doi.org/10.1007/s42247-021-00201-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00201-w

Keywords

Navigation