Skip to main content
Log in

Effect of temperature and reaction path interaction on fluidization reduction kinetics of iron ore powder

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Due to the instability of FeO at temperatures below 843 K, the fluidization reduction pathway of iron ore powder changes with the reduction temperature. Thus, the effect of temperature and reaction pathway interaction on the kinetics of fluidization reduction of iron ore powder under low-temperature conditions ranging from 783 to 903 K was investigated to describe the fluidization reduction rate of iron ore powder from three aspects: microstructure change, reaction limiting link, and apparent activation energy of the reaction, exploring their internal correlation. The experimental results revealed that in a temperature range of 783–813 K, the formation of a dense iron layer hindered the internal diffusion of reducing gas, resulting in relatively high gas diffusion resistance. In addition, due to the differences in limiting links and reaction pathways in the intermediate stage of reduction, the apparent activation energy of the reaction varied. The apparent activation energy of the reaction ranged from 23.36 to 89.13 kJ/mol at temperature ranging from 783 to 813 K, while it ranged from 14.30 to 68.34 kJ/mol at temperature ranging from 873 to 903 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Zhao, H. Zuo, Y. Wang, J. Wang, Q. Xue, Ironmak. Steelmak. 47 (2020) 296–306.

    Article  CAS  Google Scholar 

  2. R.R. Wang, Y.Q. Zhao, A. Babich, D. Senk, X.Y. Fan, J. Clean. Prod. 329 (2021) 129797.

    Article  CAS  Google Scholar 

  3. V. Vogl, M. Åhman, L.J. Nilsson, J. Clean. Prod. 203 (2018) 736–745.

    Article  CAS  Google Scholar 

  4. A. Bhaskar, M. Assadi, H. Nikpey Somehsaraei, Energies 13 (2020) 758.

    Article  CAS  Google Scholar 

  5. Y. Shi, Z. Guo, D. Zhu, J. Pan, S. Lu, J. Alloy. Compd. 953 (2023) 170126.

    Article  CAS  Google Scholar 

  6. Y. Qu, Y. Yang, Z. Zou, C. Zeilstra, K. Meijer, R. Boom, ISIJ Int. 55 (2015) 952–960.

    Article  CAS  Google Scholar 

  7. P. Li, Y. Li, J. Yu, P. Gao, Y. Han, Int. J. Hydrogen Energy 47 (2022) 31140–31151.

    Article  CAS  Google Scholar 

  8. J. Oh, D. Noh, Fuel 196 (2017) 144–153.

    Article  CAS  Google Scholar 

  9. M.V.C. Sastri, R.P. Viswanath, B. Viswanathan, Int. J. Hydrogen Energy 7 (1982) 951–955.

    Article  CAS  Google Scholar 

  10. M.J. Tiernan, P.A. Barnes, G.M.B. Parkes, J. Phys. Chem. B 105 (2001) 220–228.

    Article  CAS  Google Scholar 

  11. G.Y. Lee, J.P. Choi, J.I. Song, S.S. Jung, J.S. Lee, Mater. Trans. 55 (2014) 1611–1617.

    Article  CAS  Google Scholar 

  12. C.J.M. Hessels, T.A.M. Homan, N.G. Deen, Y. Tang, Powder Technol. 407 (2022) 117540.

    Article  CAS  Google Scholar 

  13. N. Thüns, B.M. Krooss, Q. Zhang, H. Stanjek, Int. J. Hydrogen Energy 44 (2019) 27615–27625.

    Article  Google Scholar 

  14. A. Pineau, N. Kanari, I. Gaballah, Thermochim. Acta 447 (2006) 89–100.

    Article  CAS  Google Scholar 

  15. J.M. Pang, P.M. Guo, P. Zhao, C.Z. Cao, D.W. Zhang, J. Iron Steel Res. Int. 16 (2009) No. 5, 7–11.

    Article  CAS  Google Scholar 

  16. S.H. Kim, X. Zhang, Y. Ma, I.R. Souza Filho, K. Schweinar, K. Angenendt, D. Vogel, L.T. Stephenson, A.A. El-Zoka, J.R. Mianroodi, M. Rohwerder, B. Gault, D. Raabe, Acta Mater. 212 (2021) 116933.

    Article  CAS  Google Scholar 

  17. K. He, Z. Zheng, Z. Chen, H. Chen, W. Hao, Int. J. Hydrogen Energy 46 (2021) 4592–4605.

    Article  CAS  Google Scholar 

  18. P.V. Ponugoti, P. Garg, S.N. Geddam, S. Nag, V.M. Janardhanan, Chem. Eng. J. 434 (2022) 134384.

    Article  CAS  Google Scholar 

  19. Y.L. Sui, Y.F. Guo, T. Jiang, G.Z. Qiu, J. Alloy. Compd. 706 (2017) 546–553.

    Article  CAS  Google Scholar 

  20. B. Hou, H. Zhang, H. Li, Q. Zhu, Chin. J. Chem. Eng. 20 (2012) 10–17.

    Article  CAS  Google Scholar 

  21. A.A. Barde, J.F. Klausner, R. Mei, Int. J. Hydrogen Energy 41 (2016) 10103–10119.

    Article  CAS  Google Scholar 

  22. J.L. Zhang, X.D. Xing, M.M. Cao, K.X. Jiao, C.L. Wang, S. Ren, J. Iron Steel Res. Int. 20 (2013) No. 2, 1–7.

    Article  Google Scholar 

  23. Y. Dong, H. Wan, Metallurgical physical chemistry, Hefei University of Technology Press, Hefei, China, 2011.

    Google Scholar 

  24. J.M. Pang, P.M. Guo, P. Zhao, J. Iron Steel Res. Int. 22 (2015) 391–395.

    Article  Google Scholar 

  25. H. Chen, Z. Zheng, Z. Chen, X.T. Bi, Powder Technol. 316 (2017) 410–420.

    Article  CAS  Google Scholar 

  26. B. Weiss, J. Sturn, S. Voglsam, F. Winter, J. Schenk, Chem. Eng. Sci. 66 (2011) 703–708.

    Article  CAS  Google Scholar 

  27. D. Guo, M. Hu, C. Pu, B. Xiao, Z. Hu, S. Liu, X. Wang, X. Zhu, Int. J. Hydrogen Energy 40 (2015) 4733–4740.

    Article  CAS  Google Scholar 

  28. Y.H. Lin, Z.C. Guo, H.Q. Tang, S. Ren, J.W. Li, J. Iron Steel Res. Int. 19 (2012) No. 6, 6–8.

    Article  CAS  Google Scholar 

  29. H. Wang, B. Liu, G. Yang, C. You, Int. J. Hydrogen Energy 48 (2023) 16601–16613.

    Article  CAS  Google Scholar 

  30. J. Zhu, W. Wang, X.N. Hua, F. Wang, Z. Xia, Z. Deng, Int. J. Hydrogen Energy 40 (2015) 12097–12107.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by the National Natural Science Foundation of China-Xinjiang Joint Fund (U2003124), the National Natural Science Foundation of China (No. 51974001), and the University Outstanding Young Talents Funding Program (No. gxyq2019016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-yan Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Gm., Hu, Mw., Dou, An. et al. Effect of temperature and reaction path interaction on fluidization reduction kinetics of iron ore powder. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01182-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01182-w

Keywords

Navigation