Skip to main content
Log in

Strength–toughness improvement of 13Cr4NiMo martensitic stainless steel with thermal cyclic heat treatment

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To improve the strength–toughness of 13Cr4NiMo martensitic stainless steel (13-4MSS), a thermal cyclic heat treatment (TCHT) combined with the advantage of tempering was proposed. The microstructures were characterized by scanning electron microscopy, X-ray diffraction and electron backscattered diffraction, and the mechanical behaviors in terms of tensile properties and impact toughness were analyzed in correlation with microstructural evolution. It was found that grains and the martensitic matrix were refined by TCHT through the cyclic quenching transformation and austenite recrystallization, which was conducive to more nucleation quantity of reversed austenite during tempering. Two-spherical-cap nucleation model was used to explain the effect of refined grains of TCHT on the nucleation of reversed austenite. Grain refinement by TCHT improved the brittle fracture stress to reduce the ductile–brittle transition temperature and thus improved the cryogenic impact toughness of 13-4MSS. Reversed austenite distributed at the martensitic lath boundary enhances the crack arrest performance and increases the brittle fracture stress. It is concluded that reasonable TCHT plus tempering process significantly improves the strength–toughness of 13-4MSS, reflecting the comprehensive effect of grain refinement and reversed austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Prakash, S.K. Nath, J. Mater. Eng. Perform. 27 (2018) 3206–3216.

    Article  Google Scholar 

  2. P. Wang, N. Xiao, S. Lu, D. Li, Y. Li, Mater. Sci. Eng. A 586 (2013) 292–300.

    Article  Google Scholar 

  3. S.A. Bashu, K. Singh, M.S. Rawat, Mater. Sci. Eng. A 127 (1990) 7–15.

    Article  Google Scholar 

  4. Y.R. Liu, D. Ye, Q.L. Yong, J. Su, K.Y. Zhao, W. Jiang, J. Iron Steel Res. Int. 18 (2011) No. 11, 60–66.

    Article  Google Scholar 

  5. S. Zhang, P. Wang, D. Li, Y. Li, Mater. Des. 84 (2015) 385–394.

    Article  Google Scholar 

  6. W.H. Yuan, X.H. Gong, Y.Q. Sun, J.X. Liang, J. Iron Steel Res. Int. 23 (2016) 401–408.

    Article  Google Scholar 

  7. M. De Sanctis, G. Lovicu, M. Buccioni, A. Donat, M. Richetta, A. Varone, Metals 7 (2017) 351.

    Article  Google Scholar 

  8. B. Ravi Kumar, S. Sharma, B.P. Kashyap, N. Prabhu, Mater. Des. 68 (2015) 63–71.

    Article  Google Scholar 

  9. M. Najafi, H. Mirzadeh, M. Alibeyki, Mater. Sci. Eng. A 670 (2016) 252–255.

    Article  Google Scholar 

  10. R. Ueji, N. Tsuji, Y. Minamino, Y. Koizumi, Acta Mater. 50 (2002) 4177–4189.

    Article  Google Scholar 

  11. K. Huang, R.E. Logé, Mater. Des. 111 (2016) 548–574.

    Article  Google Scholar 

  12. S. Saadatkia, H. Mirzadeh, J.M. Cabrera, Mater. Sci. Eng. A 636 (2015) 196–202.

    Article  Google Scholar 

  13. W. Hui, Ultra-fine grained steels, Springer Berlin Heidelberg, Berlin, Germany, 2009.

  14. J.Y. Koo, G. Thomas, Mater. Sci. Eng. 24 (1976) 187–198.

    Article  Google Scholar 

  15. J. Singh, S.K. Nath, J. Mater. Eng. Perform. 29 (2020) 2478–2490.

    Article  Google Scholar 

  16. J. Singh, S.K. Nath, Trans. Indian Inst. Met. 73 (2020) 2519–2528.

    Article  Google Scholar 

  17. P. Wang, S.P. Lu, D.D. Li, X.S. Kang, Y.Y. Li, Acta Metall. Sin. 44 (2008) 681–685. https://doi.org/10.3321/j.issn:0412-1961.2008.06.008.

    Article  Google Scholar 

  18. J. Chiang, B. Lawrence, J.D. Boyd, A.K. Pilkey, Mater. Sci. Eng. A 528 (2011) 4516–4521.

    Article  Google Scholar 

  19. T. Karthikeyan, M.K. Dash, S. Saroja, M. Vijayalakshmi, Micron 68 (2015) 77–90.

    Article  Google Scholar 

  20. H.J. Kim, Y.H. Kim, J.W. Morris Jr., ISIJ Int. 38 (1998) 1277–1285.

    Article  Google Scholar 

  21. Z. Ye, C. Wu, Y. Xia, X. Chen, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 234 (2020) 1399–1408.

    Google Scholar 

  22. M.A. Maleque, Y.M. Poon, H.H. Masjuki, J. Mater. Process. Technol. 153–154 (2004) 482–487.

    Article  Google Scholar 

  23. T. Hanamura, S. Torizuka, S. Tamura, S. Enokida, H. Takechi, ISIJ Int. 53 (2013) 2218–2225.

    Article  Google Scholar 

  24. V.T. Duong, Y.Y. Song, K.S. Park, H.K.D.H. Bhadeshia, D.W. Suh, Metall. Mater. Trans. A 45 (2014) 4201–4209.

    Article  Google Scholar 

  25. C. Sun, S.L. Liu, R.D.K. Misra, Q. Li, D.H. Li, Mater. Sci. Eng. A 711 (2018) 484–491.

    Article  Google Scholar 

  26. P. Goodhew, Int. J. Fatigue 2 (1980) 138.

    Article  Google Scholar 

  27. A. Scheid, L.M. Félix, D. Martinazzi, T. Renck, C.E. Fortis Kwietniewski, Mater. Sci. Eng. A 661 (2016) 96–104.

    Article  Google Scholar 

  28. K. Nakazawa, Y. Kawabe, S. Muneki, ISIJ Int. 23 (1983) 347–356.

    Article  Google Scholar 

  29. P.J. Brofman, G.S. Ansell, Metall. Trans. A 14 (1983) 1929–1931.

    Article  Google Scholar 

  30. T. Furuhara, K. Kikumoto, H. Saito, T. Sekine, T. Ogawa, S. Morito, T. Maki, ISIJ Int. 48 (2008) 1038–1045.

    Article  Google Scholar 

  31. D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, P.P. Choi, Acta Mater. 61 (2013) 6132–6152.

    Article  Google Scholar 

  32. S. Rajasekhara, P.J. Ferreira, Acta Mater. 59 (2011) 738–748.

    Article  Google Scholar 

  33. D. Jain, D. Isheim, X.J. Zhang, G. Ghosh, D.N. Seidman, Metall. Mater. Trans. A 48 (2017) 3642–3654.

    Article  Google Scholar 

  34. C.C. Kinney, K.R. Pytlewski, A.G. Khachaturyan, J.W. Morris Jr., Acta Mater. 69 (2014) 372–385.

    Article  Google Scholar 

  35. J.W. Morris Jr., Science 320 (2008) 1022–1023.

    Article  Google Scholar 

  36. X.J. Shen, S. Tang, J. Chen, Z.Y. Liu, R.D.K. Misra, G.D. Wang, Mater. Des. 113 (2017) 137–141.

    Article  Google Scholar 

  37. J.W. Morris Jr., Z. Guo, C.R. Krenn, Y.H. Kim, ISIJ Int. 41 (2001) 599–611.

    Article  Google Scholar 

  38. W.X. Zhang, Y.Z. Chen, Y.B. Cong, Y.H. Liu, F. Liu, J. Mater. Sci. 56 (2021) 12539–12558.

    Article  Google Scholar 

  39. C.N. Ahlquist, Acta Metall. 23 (1975) 239–243.

    Article  Google Scholar 

  40. S. Zhang, D. Lv, J. Xiong, J. Mater. Res. Technol. 18 (2022) 2963–2976.

    Article  Google Scholar 

  41. Y.G. Yang, W.Z. Mu, X.Q. Li, H.T. Jiang, M. Wang, Z.L. Mi, X.P. Mao, J. Iron Steel Res. Int. 29 (2022) 316–326.

    Article  Google Scholar 

  42. D. Nakanishi, T. Kawabata, S. Aihara, Mater. Sci. Eng. A 723 (2018) 238–246.

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by Specific Research Project of Guangxi for Research Bases and Talents (Grant No. GuiKe AD19245145) and Natural Science Foundation of Guangxi Province (Grant No. 2018GXNSFBA281106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-hua Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Tong, Yl., Peng, Jl. et al. Strength–toughness improvement of 13Cr4NiMo martensitic stainless steel with thermal cyclic heat treatment. J. Iron Steel Res. Int. 30, 1499–1510 (2023). https://doi.org/10.1007/s42243-023-00960-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00960-2

Keywords

Navigation