Skip to main content
Log in

Toughness Improvement in a Novel Martensitic Stainless Steel Achieved by Quenching–Tempering and Partitioning

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present work, a novel medium carbon martensitic stainless steel (MCMSS) with an excellent combination of strength, ductility, and impact toughness was designed on the basis of quenching-tempering and partitioning (Q–T&P) technology. Q–T&P is an identical heat treatment with a standard quenching and tempering (Q–T) process but has the same role with quenching and partitioning (Q&P) on microstructure control, i.e., promoting carbon-rich retained austenite via inhibiting carbide precipitation. Results show that, without compromise on strength, the total elongation and room temperature impact toughness, i.e., 9.6 pct and 90 J cm−2, of the proposed alloy (23Cr13MnSi) increase by 14 and 110 pct, respectively, as compared to those of the commercial AISI 420. The significant improvement of ductility and impact toughness in the proposed alloy is mainly a result of the gradual transformation induced plasticity (TRIP) effects, which are caused by carbon-rich retained austenite with heterogeneous stability and carbide-free martensite formed in the Q–T&P process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Köse and R. Kaçar: Mater. Des., 2014, vol. 64, pp. 221–6.

    Article  CAS  Google Scholar 

  2. R. Castro and R. Tricot: in The Metallurgical Evolution of Stainless Steels, F.B. Pickering, ed., ASM, Metals Park, OH, 1979, pp. 43–62.

  3. E.A. Little, D.R. Harries, F.B. Pickering, and S.R. Keown: Met. Technol., 1977, vol. 4, pp. 205–17.

    Article  Google Scholar 

  4. A.N. Isfahany, H. Saghafian, and G. Borhani: J. Alloys Compd., 2011, vol. 509, pp. 3931–6.

    Article  CAS  Google Scholar 

  5. S.K. Bonagani, V. Bathula, and V. Kain: Corr. Sci., 2018, vol. 134, pp. 340–54.

    Article  CAS  Google Scholar 

  6. T. Tsuchiyama, J. Tobata, T. Tao, N. Nakadaa, and S. Takaki: Mater. Sci. Eng. A., 2012, vol. 532, pp. 585–92.

    Article  CAS  Google Scholar 

  7. G. Berry and R. Brook: Met. Sci., 2013, vol. 9, pp. 467–71.

    Article  Google Scholar 

  8. P. Lemblé, A. Pineau, J.L. Castagne, and P. Dumoulin: Met. Sci., 2013, vol. 13, pp. 496–502.

    Article  Google Scholar 

  9. Y. Toji, G. Miyamoto, and D.J.A.M. Raabe: Acta Mater., 2015, vol. 86, pp. 137–47.

    Article  CAS  Google Scholar 

  10. H.Y. Li, X.W. Lu, W.J. Li, and X.J. Jin: Metall. Mater. Trans. A., 2010, vol. 41A, pp. 1284–300.

    Article  CAS  Google Scholar 

  11. E.J. Seo, L. Cho, and B.C.D. Cooman: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 4022–37.

    Article  CAS  Google Scholar 

  12. J. Mola and B.C.D. Cooman: Scripta Mater., 2011, vol. 65, pp. 834–7.

    Article  CAS  Google Scholar 

  13. J. Tobata, K.L. Ngo-Huynh, N. Nakada, T. Tsuchiyama, and S. Takaki: ISIJ Int., 2012, vol. 52, pp. 1377–82.

    Article  CAS  Google Scholar 

  14. J. Mola and B.C.D. Cooman: Metall. Mater. Trans. A., 2013, vol. 44A, pp. 946–67.

    Article  CAS  Google Scholar 

  15. S.Y. Lu, K.F. Yao, Y.B. Chen, M.H. Wang, N. Chen, and X.Y. Ge: Corr. Sci., 2016, vol. 103, pp. 95–104.

    Article  Google Scholar 

  16. H.F. Li, Q.Q. Duan, P. Zhang, and Z.F. Zhang: Adv. Eng. Mater., 2019, vol. 21, p. 1801116.

    Article  CAS  Google Scholar 

  17. J. Speer, D.K. Matlock, B.C.D. Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22.

    Article  CAS  Google Scholar 

  18. D.V. Edmonds, K. He, F.C. Rizzo, B.C.D. Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng. A., 2006, vol. 438, pp. 25–34.

    Article  CAS  Google Scholar 

  19. M.J. Santofimia, T. Nguyen-Minh, L. Zhao, R. Petrov, I. Sabirov, and J. Sietsma: Mater. Sci. Eng. A., 2010, vol. 527, pp. 6429–39.

    Article  CAS  Google Scholar 

  20. Y. Toji, H. Matsuda, M. Herbig, P.P. Choi, and D. Raabe: Acta Mater., 2014, vol. 65, pp. 215–28.

    Article  CAS  Google Scholar 

  21. H.L. Yi, L. Sun, and X.C. Xiong: Mater. Sci. Technol., 2018, vol. 34, pp. 1112–7.

    Article  CAS  Google Scholar 

  22. R. Parthiban, S.G. Chowdhury, K.C. Harikumar, and S. Sankaran: Mater. Sci. Eng. A., 2017, vol. 705, pp. 376–84.

    Article  CAS  Google Scholar 

  23. J.G. Speer, E.D. Moor, K.O. Findley, D.K. Matlock, B.C.D. Cooman, and D.V. Edmonds: Metall. Mater. Trans. A., 2011, vol. 42A, pp. 3591–601.

    Article  CAS  Google Scholar 

  24. E.P. Bagliani, M.J. Santofimia, L. Zhao, J. Sietsma, and E. Anelli: Mater. Sci. Eng. A., 2013, vol. 559, pp. 486–95.

    Article  CAS  Google Scholar 

  25. Z.J. Xie, Y.Q. Ren, W.H. Zhou, J.R. Yang, C.J. Shang, and R.D.K. Misra: Mater. Sci. Eng. A., 2014, vol. 603, pp. 69–75.

    Article  CAS  Google Scholar 

  26. Y. Wang, K. Zhang, Z. Guo, N. Chen, and Y. Rong: Mater. Sci. Eng. A., 2012, vol. 552, pp. 288–94.

    Article  CAS  Google Scholar 

  27. U.K. Viswanathan, G.K. Dey, and V. Sethumadhavan: Mater. Sci. Eng. A., 2005, vol. 398, pp. 367–72.

    Article  CAS  Google Scholar 

  28. H.L. Yi, P. Chen, Z.Y. Hou, N. Hong, H.L. Cai, Y.B. Xu, D. Wu, and G.D. Wang: Scripta Mater., 2013, vol. 68, pp. 370–4.

    Article  CAS  Google Scholar 

  29. Y.S. Choi, J.G. Kim, Y.S. Park, and J.Y. Park: Mater. Lett., 2007, vol. 61, pp. 244–7.

    Article  CAS  Google Scholar 

  30. A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, and A. Borgenstam: Acta Mater., 2012, vol. 60, pp. 7265–74.

    Article  CAS  Google Scholar 

  31. B. Kim, J. Sietsma, and M.J. Santofimia: Mater. Des., 2017, vol. 127, pp. 336–45.

    Article  CAS  Google Scholar 

  32. C.Y. Kung and J.J. Rayment: Metall. Trans. A., 1982, vol. 13A, pp. 328–31.

    Article  CAS  Google Scholar 

  33. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  34. K.I. Sugimoto, N. Usui, M. Kobayashi, and S.I. Hashimoto: ISIJ Int., 1992, vol. 32, pp. 1311–8.

    Article  CAS  Google Scholar 

  35. B.D. Cullity: Elements of X-ray Diffraction. 1st ed. Addison-Wesley Publishing Co., London, 1956, pp. 237–8.

    Google Scholar 

  36. H.S. Yang, J.H. Jang, H.K.D.H. Bhadeshia, and D.W. Suh: Calphad., 2012, vol. 36, pp. 16–22.

    Article  CAS  Google Scholar 

  37. H.S. Yang and H.K.D.H. Bhadeshia: Scripta Mater., 2009, vol. 60, pp. 493–5.

    Article  CAS  Google Scholar 

  38. V. Raghavan, D.P. Antia, and M.T. Metallurgy: Metall. Mater. Trans. A., 1996, vol. 27A, pp. 1127–32.

    Article  CAS  Google Scholar 

  39. L. Liu, B.B. He, G.J. Cheng, H.W. Yen, and M.X. Huang: Scripta Mater., 2018, vol. 150, pp. 1–6.

    Article  CAS  Google Scholar 

  40. N. Nakada, Y. Ishibashi, T. Tsuchiyama, and S.J. Takaki: Acta Mater., 2016, vol. 110, pp. 95–102.

    Article  CAS  Google Scholar 

  41. J. Hidalgo, K.O. Findley, and M.J. Santofimia: Mater. Sci. Eng. A., 2017, vol. 690, pp. 337–47.

    Article  CAS  Google Scholar 

  42. J.G. Speer, D.K. Matlock, B.C.D. Cooman, and J.G. Schroth: Scripta Mater., 2005, vol. 52, pp. 83–5.

    Article  CAS  Google Scholar 

  43. T. Minemura, A. Inoue, and T.J. Masumoto: Trans. ISIJ., 1981, vol. 21, pp. 649–55.

    Article  Google Scholar 

  44. G.A. Thomas and J.G. Speer: Mater. Sci. Technol., 2014, vol. 30, pp. 998–1007.

    Article  CAS  Google Scholar 

  45. D.P. Yang, D. Wu, and H.L. Yi: Scripta Mater., 2019, vol. 161, pp. 1–5.

    Article  CAS  Google Scholar 

  46. P.J. Du, P. Chen, D.K. Misra, D. Wu, and H.L. Yi: Metals., 2020, vol. 10, pp. 1343–53.

    Article  Google Scholar 

  47. H.K.D.H. Bhadeshia: Steels: Microstructure and Properties. 3rd ed. Butterworth-Heinemann, Oxford, 2006, pp. 251–2.

    Google Scholar 

  48. L. Yuan, D. Ponge, J. Wittig, P. Choi, J.A. Jiménez, and D. Raabe: Acta Mater., 2012, vol. 60, pp. 2790–804.

    Article  CAS  Google Scholar 

  49. B. Deng, D.P. Yang, G.D. Wang, Z.Y. Hou, and H.L. Yi: Materials., 2021, vol. 14, p. 1000.

    Article  CAS  Google Scholar 

  50. A. Rajasekhar, G.M. Reddy, T. Mohandas, and V.S.R. Murti: Mater. Des., 2009, vol. 30, pp. 1612–24.

    Article  CAS  Google Scholar 

  51. D.K. Hong and I.S. Kim: ISIJ Int., 1994, vol. 34, pp. 198–204.

    Article  Google Scholar 

  52. K.F. Kelton, A.L. Greer, and C.V. Thompson: J. Chem. Phys., 1983, vol. 79, pp. 6261–76.

    Article  CAS  Google Scholar 

  53. M.G. Mecozzi, J. Eiken, M.J. Santofimia, and J. Sietsma: Comput. Mater. Sci., 2016, vol. 112, pp. 245–56.

    Article  CAS  Google Scholar 

  54. P.M. Kelly, A. Jostsons, and R.G. Blake: Acta Metall., 1990, vol. 38, pp. 1075–81.

    Article  CAS  Google Scholar 

  55. M. Saeglitz and G. Krauss: Metall. Mater. Trans. A., 1997, vol. 28A, pp. 377–87.

    Article  CAS  Google Scholar 

  56. G. Krauss: Metall. Mater. Trans. B., 2001, vol. 32B, pp. 205–21.

    Article  CAS  Google Scholar 

  57. J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, and W. Cao: Scripta Mater., 2010, vol. 63, pp. 815–8.

    Article  CAS  Google Scholar 

  58. J. Wang and S.V.D. Zwaag: Metall. Mater. Trans. A., 2001, vol. 32A, pp. 1527–39.

    Article  CAS  Google Scholar 

  59. G.B. Olson and M. Cohen: J. Less Common Met., 1972, vol. 28, pp. 107–18.

    Article  CAS  Google Scholar 

  60. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang: Scripta Mater., 2013, vol. 68, pp. 321–4.

    Article  CAS  Google Scholar 

  61. Q. Zhou, L. Qian, J. Tan, J. Meng, and F. Zhang: Mater. Sci. Eng. A., 2013, vol. 578, pp. 370–6.

    Article  CAS  Google Scholar 

  62. G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, and B. Bai: Acta Mater., 2014, vol. 76, pp. 425–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was financially supported by the National Natural Science Foundation of China (Grant No. 51722402, No.52130107), as well as by the Fundamental Research Funds for the Central Universities (Grant No. N2007012, 2020CDJDPT001), the 111 Project (Grant No. B16009) and the Liaoning Revitalization Talents Program (Grant No. XLYC1907128). ZH would like to thank the financial support from Jernkontoret (The Swedish Steel Producers’ Association), Stiftelsen Axel Ax:son Johnsons forskningsfond and Prytziska fonden nr 2.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Y. Hou or H. L. Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 2, 2021, accepted August 6, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, B., Hou, Z.Y., Wang, G.D. et al. Toughness Improvement in a Novel Martensitic Stainless Steel Achieved by Quenching–Tempering and Partitioning. Metall Mater Trans A 52, 4852–4864 (2021). https://doi.org/10.1007/s11661-021-06429-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06429-9

Navigation