Skip to main content
Log in

Numerical investigation on particles removal by bubble flotation in swirling flow

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The removal of particles is of great importance in many fields including effluent treatment, mineral separation, clean metal production, etc. However, most of the researchers paid their attention to the two-phase flow involving gas–liquid or solid–liquid independently. The motion and interaction between bubbles and particles in the swirling three-phase flow field were simulated by discrete phase model. The swirling flow and the collision between bubbles and particles were governed by compiling the user-defined function program. The centripetal pressure gradient force pushes the discrete phases toward the central region, where the collision rate between particle and bubbles is improved greatly. Moreover, it proved beneficially for particle removal to increase the swirling velocity, particularly for larger particles. Thus, bubble flotation is an effective method to remove particles from the fluid. The swirling velocity was optimized, which is valuable for industrial design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M.Y. Han, J. Water Suppl. Res. Technol. 51 (2002) 27–34.

    Article  Google Scholar 

  2. D. Urfer, P.M. Huck, S.D.J. Booth, B.M. Coffcy, J. Am. Water Works Assoc. 89 (1997) No. 12, 83–98.

    Article  Google Scholar 

  3. P.T.L. Koh, M. Manickam, M.P. Schwarz, Miner. Eng. 13 (2000) 1455–1463.

    Article  Google Scholar 

  4. M.J. Zhang, H.Z. Gu, A. Huang, H.X. Zhu, C.J. Deng, J. Min. Metall. Sect. B 47 (2011) 37–44.

    Article  Google Scholar 

  5. Q.Y. Zhang, L.T. Wang, Z.R. Xu, ISIJ Int. 46 (2006) 1177–1182.

    Article  Google Scholar 

  6. H.L. Yang, P. He, Y.C. Zhai, ISIJ Int. 54 (2014) 578–581.

    Article  Google Scholar 

  7. J. Aoki, L.F. Zhang, B.G. Thomas, in: 3rd International Congress on Science & Technology of Steelmaking, Association for Iron & Steel Technology, Warrendale, USA, 2005, pp. 319–322.

  8. L.F. Zhang, S. Taniguchi, Int. Mater. Rev. 45 (2000) 59–82.

    Article  Google Scholar 

  9. Y. Miki, H. Kitaoka, T. Sakuraya, T. Fujii, ISIJ Int. 32 (1992) 142–149.

    Article  Google Scholar 

  10. N. Sonoyama, M. Iguchi, S. Takagi, S. Yokoya, Tetsu-to-Hagane 90 (2004) 312–316.

    Article  Google Scholar 

  11. P.Y. Ni, M. Ersson, L.T.I. Jonsson, P.G. Jönsson, Metall. Mater. Trans. B 49 (2018) 723–736.

    Article  Google Scholar 

  12. F. Magaud, A.F. Najafi, J.R. Angilella, M. Souhar, J. Fluids Eng. 125 (2003) 239–246.

    Article  Google Scholar 

  13. Y. Tanaka, R. Suzuki, K. Arai, K. Iwamoto, K. Kawazura, J. Visualization 4 (2001) 81–90.

    Article  Google Scholar 

  14. T.T. Zhang, J.L. Yin, D.Z. Wang, J. Mech. Sci. Technol. 31 (2017) 5123–5129.

    Article  Google Scholar 

  15. S. Yokoya, S. Takagi, H. Souma, M. Iguchi, Y. Asako, S. Hara, ISIJ Int. 38 (1998) 1086–1092.

    Article  Google Scholar 

  16. X.B. Li, H.X. Yuan, Z.W. Cao, Met. Mine 12 (2007) No. 12, 101–103.

  17. X.D. Wu, C. Zhou, Y.S. An, X.W. Liu, X.Q. Cen, Nat. Gas Ind. B 3 (2016) 339–345.

    Article  Google Scholar 

  18. D.Y. Liu, Two-phase fluid dynamics, Higher Education Press, Beijing, China, 1993.

    Google Scholar 

  19. L.J. Guo, Two-phase and multi-phase fluid dynamics, Xi’an Jiaotong University Press, Xi’an, China, 2002.

  20. S.I. Rubinow, J.B. Keller, J. Fluid Mech. 11 (1961) 447–459.

    Article  MathSciNet  Google Scholar 

  21. P.G. Saffman, J. Fluid Mech. 22 (1965) 385–400.

    Article  Google Scholar 

  22. D. Borzacchiello, E. Leriche, B. Blottière, J. Guillet, Comput. Fluid. 156 (2017) 515–525.

    Article  Google Scholar 

  23. M. Furuichi, D.A. May, P.J. Tackley, J. Comput. Phys. 230 (2011) 8835–8851.

    Article  MathSciNet  Google Scholar 

  24. M. Kronbichler, T. Heister, W. Bangerth, Geophys. J. Int. 191 (2012) 12–29.

    Article  Google Scholar 

  25. J.C. Yan, T. Li, S.F. Yang, Steel Res. Int. 91 (2020) 1900578.

    Article  Google Scholar 

  26. B.E. Launder, D.B. Spalding, Compt. Meth. Appl. Mech. Eng. 3 (1974) 269–289.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51874061), the Scientific Research Foundation (Hundred Talents’ Scholar) from Chongqing University and Venture & Innovation Support Program for Chongqing Overseas Returnees (cx2019026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Hn., Li, T., Zhu, Yl. et al. Numerical investigation on particles removal by bubble flotation in swirling flow. J. Iron Steel Res. Int. 29, 961–972 (2022). https://doi.org/10.1007/s42243-022-00748-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00748-w

Keywords

Navigation