Skip to main content
Log in

Effect of cohesive particle addition on bubbling characteristics of gas-solid fluidized bed: Meso-scale mechanism

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Due to the small particle size and large specific surface area, the cohesive particles affect the flow characteristics in a gas-solid bubbling fluidized bed. They can easily produce agglomerated and smooth heterogeneous flow under the different cohesive particle addition amounts. The influence of the cohesive particle amount on the bubbling characteristics was experimentally investigated for two typical cases: bed surface agglomerate and well-dispersed with the bed. The images of bubble rise were recorded by digital camera and processed by binarization to track bubble motion and obtained the bubble motion characteristics. An energy minimization multiscale (EMMS) model based on binary particle bubble was expanded to the flow of cohesive particles to reveal the basic mechanism of influence of the cohesive particle. By comparing the results predicted by the model with the experimental data, it is found that the change rules of bubble size and bubble rising speed are similar, which proves the feasibility of the newly developed EMMS model. A study of the structure shows that the addition of cohesive particles increases the size of the bubbles and inhibits the collapse of the bubble due to the reduction of the gas-solid resistance coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

acceleration (m·s−2)

a′:

contact area radius of the particles

C f :

factor accounting for the percentage of nominal contact area

d:

diameter [m]

e′:

corrected coefficient of restitution

E:

Youngs modulus of solid

Ec :

contact energy loss [kg·m2s2]

Fc :

cohesive force [N]

g:

gravitational acceleration [m·s−2]

gs1,s2 :

radial distribution function of binary particles

m0 :

particle mass

Nmse :

suspending energy consumption

Nmsb :

transporting energy consumption

N t :

total suspending and transporting energy consumption

R:

bubble aspect ratio

Re:

Reynolds number

u:

superficial velocity [m·s−1]

ub :

bubble rising velocity [m·s−1]

U s_slip :

superficial slip velocity between particles [m·s−1]

v:

poisson ratio

z0 :

equilibrium separation between two solids

α :

solid fraction

a*es1,es 2 :

maximum solids volume fraction of the binary particle

β:

gas-solid drag coefficient

γ:

solid surface energy per unit contact area

ε:

voidage

ρ :

density [kg·m3]

μ :

viscosity [Pa·s]

μ*:

dimensionless parameter

χ :

bubbles fraction

b:

bubble phase

e:

emulsion phase

ef:

fluid in emulsion phase

es1:

solid phase particle 1 of emulsion phase

es2:

solid phase particle 2 of emulsion phase

f:

fluid

min:

the minimum value

p:

particle

s1:

solid phase particle 1

s2:

solid phase particle 2

References

  1. S. Pielsticker, B. Gövert, T. Kreitzberg, M. Habermehl, O. Hatzfeld and R. Kneer, Fuel, 190, 420 (2017).

    Article  CAS  Google Scholar 

  2. Y. Shao, W. Zhong and A. Yu, Powder Technol., 304, 73 (2016).

    Article  CAS  Google Scholar 

  3. Z. Tao and H. Li, Powder Technol., 101, 57 (1999).

    Article  Google Scholar 

  4. H. Luo, B. Lu, J. Zhang, H. Wu and W. Wang, Chem. Eng. J., 326, 47 (2017).

    Article  CAS  Google Scholar 

  5. B. Han, The University of Western Ontario (2017).

  6. J. G. Yates and D. Newton, Chem. Eng. Sci., 41, 801 (1986).

    Article  CAS  Google Scholar 

  7. Z. Zou, H. Z. Li and Q. S. Zhu, Powder Technol., 212, 258 (2011).

    Article  CAS  Google Scholar 

  8. L. Wei and Y. Lu, Chem. Eng. Sci., 147, 21 (2016).

    Article  CAS  Google Scholar 

  9. L. Wei, Y. Lu, G. Jiang, J. Hu and J. Zhu, Chem. Eng. Res. Des., 126, 255 (2017).

    Article  CAS  Google Scholar 

  10. Z. Shi, W. Wang and J. Li, Chem. Eng. Sci., 66, 5541 (2011).

    Article  CAS  Google Scholar 

  11. J. Li and M. Kwauk, Ind. Eng. Chem. Res., 40, 4227 (2001).

    Article  CAS  Google Scholar 

  12. K. Hong, Z. Shi, A. Ullah and W. Wang, Powder Technol., 266, 424 (2014).

    Article  CAS  Google Scholar 

  13. S. Song, Z. Hao, L. Dong, J. Li and Y. Fang, RSC Adv., 6, 111041 (2016).

    Article  CAS  Google Scholar 

  14. X. Liu, Y. Jiang, C. Liu, W. Wang and J. Li, Ind. Eng. Chem. Res., 53, 2800 (2014).

    Article  CAS  Google Scholar 

  15. N. Ahmad, Y. Tian, B. Lu, K. Hong, H. Wang and W. Wang, Chin. J. Chem. Eng., 27, 54 (2019).

    Article  CAS  Google Scholar 

  16. N. Ahmad, Y. Tong, B. Lu and W. Wang, Chem. Eng. Sci., 200, 257 (2019).

    Article  CAS  Google Scholar 

  17. M. Horio and A. Nonaka, AIChE J., 33, 1865 (1987).

    Article  CAS  Google Scholar 

  18. S. Wang, K. Zhang, S. Xu and X. Yang, Powder Technol., 338, 280 (2018).

    Article  CAS  Google Scholar 

  19. L. Wei and Y. Lu, Adv. Powder Technol., 31, 1529 (2020).

    Article  CAS  Google Scholar 

  20. S. You and M. P. Wan, Langmuir, 29, 9104 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. G. R. Caicedo, J. J. P. Marqués, M. G. A. Ruíz and J. G. Soler, Chem. Eng. Process., 42, 9 (2003).

    Article  Google Scholar 

  22. Y. Lu, J. Huang and P. Zheng, Chem. Eng. J., 274, 123 (2015).

    Article  CAS  Google Scholar 

  23. L. Wei, G. Jiang, H. Teng, J. Hu and J. Zhu, Particuology, 49, 95 (2020).

    Article  Google Scholar 

  24. R. A. Bell, Swinburne University of Technology (2000).

  25. R. Fedors and R. Landel, Powder Technol., 23, 225 (1979).

    Article  Google Scholar 

  26. L. Wei, Y. Gu, Y. Wang and Y. Lu, Powder Technol., 364, 264 (2020).

    Article  CAS  Google Scholar 

  27. M. Horio and A. Nonaka, AIChE J., 33, 1865 (1987).

    Article  CAS  Google Scholar 

  28. J. Li, W. Ge, W. Wang, N. Yang, X. Liu, L. Wang, X. He, X. Wang, J. Y. Wang and M. Kwauk, From multiscale modeling to meso-science: A chemical engineering perspective, Springer. Publications, Berlin (2013).

    Book  Google Scholar 

  29. D. Gidaspow, J. Non-Newton. Fluid., 55, 207 (1994).

    Article  Google Scholar 

  30. S. Karimipour and T. Pugsley, Powder Technol., 205, 1 (2011).

    Article  CAS  Google Scholar 

  31. J. F. Davidson and D. Harrison, Fluidization, Academic Press. Publications, London (1971).

    Google Scholar 

  32. H. Y. Xie, Adv. Powder Technol., 8, 217 (1997).

    Article  CAS  Google Scholar 

  33. K. S. Lim and P. K. Agarwal, Powder Technol., 69, 239 (1992).

    Article  CAS  Google Scholar 

  34. L. Wei, Y. Lu, J. Zhu, G. Jiang, J. Hu and H. Teng, Korean J. Chem. Eng., 35, 2117 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is currently supported by the National Natural Science Foundation of China through contract No. 22278332. Supported by the State Key Laboratory of Clean Energy Utilization (Open Fund Project No. ZJUCEU2020020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Wei or Kun Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Li, H., Wu, C. et al. Effect of cohesive particle addition on bubbling characteristics of gas-solid fluidized bed: Meso-scale mechanism. Korean J. Chem. Eng. 40, 1529–1539 (2023). https://doi.org/10.1007/s11814-023-1376-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1376-4

Keywords

Navigation