Skip to main content
Log in

Simulation of bubble breaking process in a jet mixing reactor for desulfurization of molten iron

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The gas–liquid flow behavior of the stirred flow field, the different positions of a single bubble, the initial velocity, the surface tension and the agglomeration of multiple bubbles were studied by CFD numerical simulation. The results show that the pressure distribution and velocity distribution inside the fluid during agitation indicate that the velocity difference between the liquid and the gas phase and the collision between the bubbles caused by the turbulent behavior of the liquid are the important conditions leading to the bubble breakage. Different initial bubble positions and initial bubble velocities have important effects on single bubble breakage. The surface tension is an important condition that affects the bubble breakage. When the surface tension coefficient is 0.7, the bubble will be stretched to the smallest degree; when the surface tension coefficient is 0.1, the bubble will be stretched to the largest degree and it will be easily broken into smaller bubbles. The multi-bubble results show the states and trajectories of coalescence between bubbles. The research results can provide data support for the engineering application of desulfurization process and theoretical guidance for the research of bubble breaking mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G.L. Lane, M.P. Schwarz, G.M. Evans, Appl. Math. Model. 26 (2002) 223–235.

    Article  Google Scholar 

  2. K.E. Morud, B.H. Hjertager, Chem. Eng. Sci. 51 (1996) 233–249.

    Article  Google Scholar 

  3. H. Liu, M.Z. Xie, D.Q. Wang, Chin. J. Process Eng. 71 (2007) 34–38.

    Google Scholar 

  4. Y.Y. Zhao, L.F. Zhang, W. Chen, S.S. Cheng, Y. Ren, J. Iron Steel Res. Int. 29 (2022) 719–724.

    Article  Google Scholar 

  5. J.M. Su, Z.H. Dou, T.A. Zhang, Y. Liu, J. Iron Steel Res. Int. 27 (2020) 1137–1144.

    Article  Google Scholar 

  6. Y. Zhao, W. Chen, S. Cheng, L. Zhang, Int. J. Miner. Metall. Mater. 29 (2022) 758–766.

    Article  Google Scholar 

  7. Y.J. Chen, J. Ding, P.F. Weng, X.Q. Yang, W.J. Wu, Chem. Eng. J. 386 (2020) 121826.

    Article  Google Scholar 

  8. W. Abbassi, S. Besbes, H. Ben Aissia, J.Y. Champagne, J. Braz. Soc. Mech. Sci. Eng. 41 (2019) 272.

    Article  Google Scholar 

  9. I. Chakraborty, G. Biswas, P.S. Ghoshdastidar, Int. J. Heat Mass Transf. 58 (2013) 240–259.

    Article  Google Scholar 

  10. D.D. McClure, N. Aboudha, J.M. Kavanagh, D.F. Fletcher, G.W. Barton, Chem. Eng. J. 264 (2015) 291–301.

    Article  Google Scholar 

  11. M. Cheng, J. Hua, J. Lou, Comput. Fluids 39 (2010) 260–270.

    Article  MathSciNet  Google Scholar 

  12. T. Shimogouchi, H. Naganawa, T. Nagano, B. Grambow, Y. Nagame, Anal. Sci. 35 (2019) 955–960.

    Article  Google Scholar 

  13. J. Szekely, S. Asai, Metall. Trans. 5 (1974) 463–467.

    Article  Google Scholar 

  14. C.W. Stewart, Int. J. Multiph. Flow 21 (1995) 1037–1046.

    Article  Google Scholar 

  15. G. Bozano, M. Dente, Comput. Chem. Eng. 25 (2001) 571–576.

    Article  Google Scholar 

  16. S.J. Zhang, C.J. Wu, J. Hydrodynam B 23 (2008) 681–686.

    Google Scholar 

  17. Z.Q. Cai, Experimental study on dynamic behavior of bubbles in Newtonian fluids, Beijing University of Chemical Technology, Beijing, China, 2011.

    Google Scholar 

  18. T.M. Li, S.Y. Jia, Chin. J. Chem. Eng. 46 (1995) 532–538.

    Google Scholar 

  19. J. Ramírez-Muñoz, A. Gama-Goicochea, E. Salinas-Rodríguez, Int. J. Multiph. Flow 37 (2011) 983–986.

    Article  Google Scholar 

  20. T. Wang, H.X. Li, Y. Li, Journal of Xi’an Jiaotong University 47 (2013) No. 5, 1–6.

    MathSciNet  Google Scholar 

  21. A. Smolianski, H. Haario, P. Luukka, Appl. Math. Model. 29 (2005) 615–632.

    Article  Google Scholar 

  22. A. Tomiyama, G.P. Celata, S. Hosokawa, S. Yoshida, Int. J. Multiph. Flow 28 (2002) 1497–1519.

    Article  Google Scholar 

  23. Z. Cai, Z. Gao, Y. Bao, G.M. Evans, E. Doroodchi, Ind. Eng. Chem. Res. 51 (2012) 1990–1996.

    Article  Google Scholar 

  24. D. Ma, VOF numerical simulation of dynamic behavior of single-pore bubbles, Tianjin University, Tianjin, China, 2009.

    Google Scholar 

  25. J.H. Ji, Study on fluid flow characteristics based on hot metal pretreatment desulfurization, Northeastern University, Shen-yang, China, 2017.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (51904069), the Fundamental Research Funds for the Central Universities (N2223026), and the Scientific Research Fund Project of Northeastern University at Qinhuangdao (XNY201808).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Lv or Hong-liang Zhao.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, C., Chen, Xx., Ji, Zx. et al. Simulation of bubble breaking process in a jet mixing reactor for desulfurization of molten iron. J. Iron Steel Res. Int. 30, 1117–1127 (2023). https://doi.org/10.1007/s42243-023-00984-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00984-8

Keywords

Navigation