Skip to main content

Advertisement

Log in

Investigation of stress corrosion cracking behavior and mechanism analysis of a 1900 MPa-grade ultra-high-strength stainless steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The stress corrosion cracking (SCC) behavior of a 1900 MPa-grade ultra-high-strength stainless steel in 3.5 wt.% NaCl solution was investigated by X-ray diffractometer, scanning electron microscopy, electron back-scattered diffraction, X-ray photoelectron spectroscopy, and potentiodynamic polarization curves. The results showed that USS122G steel has good SCC resistance, and the critical stress intensity factor (KISCC) of USS122G steel was about 68.906 MPa m1/2 and KISCC/KIC = 0.76 (KIC is plane strain fracture toughness). The existence of film-like austenite along the lath martensite boundary and the protective effect of thecc passivation film were the main factors for its high KISCC. Among them, the main components of the passivation film on the surface of USS122G steel were Cr2O3, Cr(OH)3, FeOOH, and Ni(OH)2. The fracture morphology of SCC zone was intergranular and transgranular. Through the slow and fast scanning rate polarization curve test results, it can be concluded that SCC mechanism of USS122G steel in 3.5 wt.% NaCl solution at the open-circuit potential was a mixed mechanism involving hydrogen embrittlement and anodic dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y.P. Zhang, D.P. Zhan, X.W. Qi, Z.H. Jiang, Mater. Charact. 144 (2018) 393–399.

    Article  Google Scholar 

  2. M. Sun, K. Xiao, C.F. Dong, X.G. Li, P. Zhong, Corros. Sci. 89 (2014) 137–145.

    Article  Google Scholar 

  3. E. Herny, Int. Heat Treat. Surf. Eng. 3 (2009) 65–69.

    Article  Google Scholar 

  4. S. Ifergane, M. Pinkas, Z. Barkay, E. Brosh, V. Ezersky, O. Beeri, N. Eliaz, Mater. Charact. 127 (2017) 129–136.

    Article  Google Scholar 

  5. L. Wang, C.F. Dong, J.Z. Yao, Z.B. Dai, C. Man, Y.P. Yin, K. Xiao, X.G. Li, Corros. Sci. 154 (2019) 178–190.

    Article  Google Scholar 

  6. Z. Guo, W. Sha, D. Vaumousse, Acta Mater. 51 (2003) 101–116.

    Article  Google Scholar 

  7. C. Man, C.F. Dong, D.C. Kong, L. Wang, X.G. Li, Corros. Sci. 151 (2019) 108–121.

    Article  Google Scholar 

  8. X.Y. Peng, X.L. Zhou, X.Z. Hua, Z.W. Wei, H.Y. Liu, J. Iron Steel Res. Int. 22 (2015) 607–614.

    Article  Google Scholar 

  9. T. Zhou, R.P. Babu, J. Odqvist, H. Yu, P. Hedstrom, Mater. Des. 143 (2018) 141–149.

    Article  Google Scholar 

  10. M.A. Mahmood, A.C. Popescu, M. Oane, D. Chioibasu, G. Popescu-Pelin, C. Ristoscu, I.N. Mihailescu, Results Phys. 22 (2021) 103880.

  11. J. Wang, Y.F. Shen, W.Y. Xue, N. Jia, R.D.K. Misra, Mater. Sci. Eng. A 803 (2021) 140484.

  12. G.K. Bansal, V. Rajinikanth, C. Ghosh, V.C. Srivastava, M. Dutta, S.G. Chowdhury, Mater. Sci. Eng. A 788 (2020) 139614.

  13. H.W. Luo, X.H. Wang, Z.B. Liu, Z.Y. Yang, J. Mater. Sci. Technol. 51 (2020) 130–136.

    Article  Google Scholar 

  14. Y.P. Zhang. D.P. Zhan, X.W. Qi, Z.H. Jiang, Mater. Sci. Eng. A 730 (2018) 41–49.

  15. Y.P. Zhang. D.P. Zhan, X.W. Qi, Z.H. Jiang, J. Mater. Sci. Technol. 35 (2019) 1240–1249.

  16. Z.B. Liu, X. Tu, X.H. Wang, J.X. Liang, Z.Y. Yang, Y.Q. Sun, C.J. Wang, J. Iron Steel Res. Int. 27 (2020) 732–741.

    Article  Google Scholar 

  17. X.H Wang, H.W. Luo, J. Mater. Eng. 47 (2019) No. 9, 1–12.

    Google Scholar 

  18. C.S. Carter, D.G. Farwick, A.M. Ross, J.M. Uchida, Corrosion 27 (1971) 190–197.

    Article  Google Scholar 

  19. G. Wang, Y. Yan, J.X. Li, J.Y. Huang, Y.J. Su, L.J. Qiao, Corros. Sci. 77 (2013) 273–280.

    Article  Google Scholar 

  20. Z.F. Wang, A. Atrens, Metall. Mater. Trans. A 27 (1996) 2686–2691.

    Article  Google Scholar 

  21. M.C. Li, Y.F Chen, Electrochim. Acta 52 (2007) 8111–8117.

  22. S. Ramamurthy, A. Atrens, Corros. Sci. 52 (2010) 1042–1051.

    Article  Google Scholar 

  23. E. Martínez-Pañeda, Z.D. Harris, S. Fuentes-Alonso, J.R. Scully, J.T. Burns, Corros. Sci. 163 (2020) 108291.

  24. Y.H. Fan, B. Zhang, H.L. Yi, G.S. Hao, Y.Y. Sun, J.Q. Wang, E.H. Han, W. Ke, Acta Mater. 139 (2017) 188–195.

    Article  Google Scholar 

  25. J.A. da Cruz, J.J. Vilela, B.M. Gonzalez, D.B. Santos, Adv. Mater. Res. 922 (2014) 298–303.

    Article  Google Scholar 

  26. R.M. Wu, W. Li, S. Zhou, Y. Zhong, L. Wang, X.J. Jin, Metall. Mater. Trans. A 45 (2014) 1892–1902.

    Article  Google Scholar 

  27. J. Venezuela, Q. Liu, M. Zhang, Q. Zhou, A. Atrens, Corros. Sci. 99 (2015) 98–117.

    Article  Google Scholar 

  28. J.P. Hirth, Metall. Trans. A 11 (1980) 861–890.

    Article  Google Scholar 

  29. W.M. Garrison, JOM 42 (1990) 20–24.

    Article  Google Scholar 

  30. Z. Li, Z.Y. Zhao, T.Q. Liu, J. Aeronautical. Mater. 23 (2003) No. S, 84–87.

  31. E.U. Lee, Metall. Mater. Trans. A 26 (1995) 1313–1316.

    Article  Google Scholar 

  32. J.X. Li, J.R. Chen, J.Z. Wu, Phys. Exam. Test. 8 (1991) No. 4, 27–30.

    Google Scholar 

  33. J.Y. Zhong, M. Sun, D.B. Liu, X.G. Li, T.Q. Liu, Int. J. Miner. Metal. Mater. 17 (2010) 282–289.

    Article  Google Scholar 

  34. J.K. Liang, L.D. Wang, Z. Li, B.M. Wang, F.C. Ding, Trans. Mater. Heat Treat. 31 (2010) 57–60.

    Google Scholar 

  35. R.O. Ritchie, M.H. Cedeno, V.F. Zackay, E.R. Parker, Metall. Trans. A 9 (1978) 35–40.

    Article  Google Scholar 

  36. X.F. Li, J. Zhang, J. Chen, S.C. Shen, G.X. Yang, T.J. Wang, X.L. Song, Mater. Sci. Eng. A 651 (2016) 474–485.

    Article  Google Scholar 

  37. Z. Guan, Y.Q. Sun, L. Li, Q.F. Li, Z.B. Liu, J.X. Liang, Heat Treat Met. 44 (2019) 226–231.

    Google Scholar 

  38. D. Figueroa, M.J. Robinson, Corros. Sci. 50 (2008) 1066–1079.

    Article  Google Scholar 

  39. D. Figueroa, M.J. Robinson, Corros. Sci. 52 (2010) 1593–1602.

    Article  Google Scholar 

  40. J. Yang, F. Huang, Z. Guo, Y. Rong, N. Chen, Mater. Sci. Eng. A 665 (2016) 76–85.

    Article  Google Scholar 

  41. A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, I.M. Robertson, Acta Mater. 60 (2012) 5182–5189.

    Article  Google Scholar 

  42. T. Ohmura, A.M. Minor, E.A. Stach, J.W. Morris, J. Mater. Res. 19 (2004) 3626–3632.

    Article  Google Scholar 

  43. Y. Lee, R.P. Gangloff, Metall. Mater. Trans. A 38 (2007) 2174–2190.

    Article  Google Scholar 

  44. M.B. Djukic, V.S. Zeravcic, G.M. Bakic, A. Sedmak, B. Rajicic, Eng. Fail. Anal. 58 (2015) 485–498.

    Article  Google Scholar 

  45. X.F. Li, J. Zhang, E. Akiyama, Y.F. Wang, Q.Z. Li, Int. J. Hydrogen Energy 43 (2018) 17898–17911.

    Article  Google Scholar 

  46. M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe, Acta Mater. 70 (2014) 174–187.

    Article  Google Scholar 

  47. Y. Li, Z.Y. Liu, E. Fan, Y.H. Huang, Y. Fan, B.J. Zhao, J. Mater. Sci. Technol. 64 (2021) 141–152.

    Article  Google Scholar 

  48. Z.Y. Liu, L. Lu, Y.Z. Huang, C.W. Du, X.G. Li, Corros. Sci. 70 (2014) 678–685.

    Article  Google Scholar 

  49. Q. Guo, J.H. Liu, M. Yu, S.M. Li, Mater. Corros. 66 (2015) 1255–1262.

    Article  Google Scholar 

  50. C.T. Liu, J.K. Wu, Corros. Sci. 49 (2007) 2198–2209.

    Article  Google Scholar 

  51. J. Xu, X.Q. Wu, E.H. Han, Electrochim. Acta 71 (2012) 219–226.

    Article  Google Scholar 

  52. S. Bera, S. Rangarajan, S.V. Narasimhan, Corros. Sci. 42 (2000) 1709–1724.

    Article  Google Scholar 

  53. Y.B. Hu, C.F. Dong, M. Sun, K. Xiao, P. Zhong, X.G. Li, Corros. Sci. 53 (2011) 4159–4165.

    Article  Google Scholar 

  54. W.J. Tobler, S. Virtanen, Corrosi. Sci. 48 (2006) 1585–1607.

    Article  Google Scholar 

  55. C.M. Abreu, M.J. Cristóbal, R. Losada, X.R. Nóvoa, G. Pena, M.C. Pérez, Electrochim. Acta 51 (2006) 2991–3000.

    Article  Google Scholar 

  56. H. Luo, Q. Yu, C.F. Dong, G. Sha, Z.B. Liu, J.X. Liang, L. Wang, G. Han, X.G. Li, Corros. Sci. 139 (2018) 185–196.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Key Research and Development Program of China (2016YFB0300104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-bao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, S., Liu, Zb., Fu, Rl. et al. Investigation of stress corrosion cracking behavior and mechanism analysis of a 1900 MPa-grade ultra-high-strength stainless steel. J. Iron Steel Res. Int. 29, 1474–1484 (2022). https://doi.org/10.1007/s42243-021-00710-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00710-2

Keywords

Navigation