Skip to main content
Log in

Tensile behavior of ultrafine-grained low carbon medium manganese steel by intercritical annealing treatment

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The intercritical annealing treatment at 650 and 700 °C results in two ultrafine-grained (UFG) dual-phase ferrite–austenite steels. The two steels exhibit different and special discontinuous yielding and pronounced Lüders-like strain phenomena with large yielding strain which are related to their retained γ-austenite (RA) volume fractions and RA stabilities. The steel annealed at 650 °C shows an absent or very small strain hardening, while the steel annealed at 700 °C shows an obvious strain hardening upward curvature with increasing strain. The results show that before and during straining, the steel annealed at 650 °C exhibits a mixture of equiaxed and elongated UFG α-ferrite and austenite phases; however, the steel annealed at 700 °C exhibits only elongated UFG α and γ phases. It was found that most of the γ-austenite to α′-martensite transformation occurred at the initial deformation stage and very small or almost no transformation occurred afterward. This demonstrates that the strain-induced martensite (SIM) transformation (γ–α′) or transformation-induced plasticity (TRIP) effect dominates only at the initial deformation stage. RA remained stable, and no TRIP effect was observed at the final deformation stage. The load–unload–reload test was performed to evaluate the back stress (σb) hardening effect. It is believed that the pronounced strain hardening behavior at the later deformation stage is mainly associated with σb enhancement induced by the strain partitioning between the soft and hard phases due to SIM transformation during tensile deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Perlade, A. Antoni, R. Besson, D. Caillard, M. Callahan, J. Emo, A.F. Gourgues, P. Maugis, A. Mestrallet, L. Thuinet, Q. Tonizzo, J.H. Schmitt, Mater. Sci. Technol. 35 (2019) 204–219.

    Article  Google Scholar 

  2. Z.C. Li, X.T. Zhang, Y.J. Mou, R.D.K. Misra, L.F. He, H.P. Li, Mater. Sci. Eng. A 746 (2019) 363–371.

    Article  Google Scholar 

  3. S. Ahmad, L.F. Lv, L.M. Fu, H.R. Wang, W. Wang, A.D. Shan, Acta Metall. Sin. (Engl. Lett.) 32 (2019) 361–371.

    Article  Google Scholar 

  4. D.W. Suh, S.J. Kim, Scripta Mater. 126 (2017) 63–67.

    Article  Google Scholar 

  5. Z.H. Cai, H. Ding, H. Kamoutsi, G.N. Haidemenopoulos, R.D.K. Misra, Mater. Sci. Eng. A 654 (2016) 359–367.

    Article  Google Scholar 

  6. X.G. Wang, L. Wang, M.X. Huang, Acta Mater. 124 (2017) 17–29.

    Article  Google Scholar 

  7. H. Luo, H. Dong, M. Huang, Mater. Des. 83 (2015) 42–48.

    Article  Google Scholar 

  8. J. Ma, H. Liu, Q. Lu, Y. Zhong, L. Wang, Y. Shen, Scripta Mater. 169 (2019) 1–5.

    Article  Google Scholar 

  9. Z.H. Cai, S.Y. Jing, H.Y. Li, K.M. Zhang, R.D.K. Misra, H.H. Ding, Z.Y. Tang, Mater. Sci. Eng. A 739 (2019) 17–25.

    Article  Google Scholar 

  10. B. Sun, F. Fazeli, C. Scott, B. Guo, C. Aranas Jr., X. Chu, M. Jahazi, S. Yue, Mater. Sci. Eng. A 729 (2018) 496–507.

    Article  Google Scholar 

  11. Y. Zhang, H. Ding, Mater. Sci. Eng. A 733 (2018) 220–223.

    Article  Google Scholar 

  12. J.H. Ryu, J.I. Kim, H.S. Kim, C.S. Oh, H.K.D.H. Bhadeshia, D.W. Suh, Scripta Mater. 68 (2013) 933–936.

    Article  Google Scholar 

  13. C. Wang, W. Cao, J. Shi, C. Huang, H. Dong, Mater. Sci. Eng. A 562 (2013) 89–95.

    Article  Google Scholar 

  14. D. Hull, D.J. Bacon, Introduction to dislocations, 5th ed., Elsevier, Amsterdam, 2011.

    Google Scholar 

  15. Z.C. Li, H. Ding, R.D.K. Misra, Z.H. Cai, Mater. Sci. Eng. A 679 (2017) 230–239.

    Article  Google Scholar 

  16. L. Fu, M. Shan, D. Zhang, H. Wang, W. Wang, A. Shan, Metall. Mater. Trans. A 48 (2017) 2179–2192.

    Article  Google Scholar 

  17. L. Fu, Z. Li, H. Wang, W. Wang, A. Shan, Scripta Mater. 67 (2012) 297–300.

    Article  Google Scholar 

  18. X.G. Wang, M.X. Huang, J. Iron Steel Res. Int. 24 (2017) 1073–1077.

    Article  Google Scholar 

  19. B. Sun, F. Fazeli, C. Scott, X. Yan, Z. Liu, X. Qin, S. Yue, Scripta Mater. 130 (2017) 49–53.

    Article  Google Scholar 

  20. Q. Han, Y. Zhang, L. Wang, Metall. Mater. Trans. A 46 (2015) 1917–1926.

    Article  Google Scholar 

  21. M. Abareshi, E. Emadoddin, Mater. Des. 32 (2011) 5099–5105.

    Article  Google Scholar 

  22. K. Steineder, D. Krizan, R. Schneider, C. Béal, C. Sommitsch, Acta Mater. 139 (2017) 39–50.

    Article  Google Scholar 

  23. H. Wang, Y. Zhang, G. Yuan, J. Kang, Y. Wang, R.D.K. Misra, G. Wang, Mater. Sci. Eng. A 737 (2018) 176–181.

    Article  Google Scholar 

  24. J. Zhang, H. Ding, R.D.K. Misra, C. Wang, Mater. Sci. Eng. A 611 (2014) 252–256.

    Article  Google Scholar 

  25. Z.C. Li, H. Ding, R.D.K. Misra, Z.H. Cai, H.X. Li, Mater. Sci. Eng. A 672 (2016) 161–169.

    Article  Google Scholar 

  26. Z.C. Li, R.D.K. Misra, Z.H. Cai, H.X. Li, H. Ding, Mater. Sci. Eng. A 673 (2016) 63–72.

    Article  Google Scholar 

  27. Z. Cai, H. Ding, X. Xue, J. Jiang, Q. Xin, R. Misra, Scripta Mater. 68 (2013) 865–868.

    Article  Google Scholar 

  28. I. Gutiérrez-Urrutia, D. Raabe, Acta Mater. 60 (2012) 5791–5802.

    Article  Google Scholar 

  29. Z.H. Cai, H. Ding, R.D.K. Misra, Z.Y. Ying, Acta Mater. 84 (2015) 229–236.

    Article  Google Scholar 

  30. Z.H. Cai, H. Ding, R.D.K. Misra, S.Q. Qiguan, Mater. Sci. Eng. A 652 (2016) 205–211.

    Article  Google Scholar 

  31. P.L. Mangonon, G. Thomas, Metall. Trans. 1 (1970) 1577–1586.

    Article  Google Scholar 

  32. G.B. Olson, M. Cohen, Metall. Trans. A 7 (1976) 1905–1914.

    Google Scholar 

  33. J. Rajagopalan, C. Rentenberger, H.P. Karnthaler, G. Dehm, M.T.A. Saif, Acta Mater. 58 (2010) 4772–4782.

    Article  Google Scholar 

  34. A.A. Saleh, E.V. Pereloma, B. Clausen, D.W. Brown, C.N. Tomé, A.A. Gazder, Acta Mater. 61 (2013) 5247–5262.

    Article  Google Scholar 

  35. X. Feaugas, Acta Mater. 47 (1999) 3617–3632.

    Article  Google Scholar 

  36. X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, PNAS 112 (2015) 14501–14505.

    Article  Google Scholar 

  37. M.X. Yang, F.P. Yuan, Q.G. Xie, Y.D. Wang, E. Ma, X.L. Wu, Acta Mater. 109 (2016) 213–222.

    Article  Google Scholar 

  38. M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Mater. Res. Lett. 4 (2016) 145–151.

    Article  Google Scholar 

  39. L. Thilly, S.V. Petegem, P.O. Renault, F. Lecouturier, V. Vidal, B. Schmitt, H.V. Swygenhoven, Acta Mater. 57 (2009) 3157–3169.

    Article  Google Scholar 

  40. A.T. Jennings, C. Gross, F. Greer, Z.H. Aitken, S.W. Lee, C.R. Weinberger, J.R. Greer, Acta Mater. 60 (2012) 3444–3455.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Joint Research Center for Future Iron and Steel, SJTU & Baosteel. The author (L.M. Fu) is grateful to the financial support from Startup Fund for Youngman Research at SJTU (SFYR at SJTU, No. 18X100040023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-ming Fu or Ai-dang Shan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Han, Z., Fu, Lm. et al. Tensile behavior of ultrafine-grained low carbon medium manganese steel by intercritical annealing treatment. J. Iron Steel Res. Int. 27, 1433–1445 (2020). https://doi.org/10.1007/s42243-020-00405-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00405-0

Keywords

Navigation