Skip to main content
Log in

Reduction kinetics of MgO-doped calcium ferrites under CO–N2 atmosphere

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of magnesia on calcium ferrite (CaO·Fe2O3) reduction by CO was examined by isothermal thermogravimetry. Samples of calcium ferrite added with 0, 2, 4, and 8 wt.% magnesia (abbreviated as CF, CF2M, CF4M, and CF8M) were prepared. Phase composition was analyzed by X-ray diffraction, and the results indicated that CF2M and CF4M are reduced to lower reduction degree and with lower apparent activation energy than CF; and CF8M with more MgO·Fe2O3 is reduced to a lower degree and with more difficulty compared with CF. Reduction rate analysis revealed that CF, CF2M, CF4M, and CF8M reductions are all typical two-step reactions with the order of CF → CWF (CaO·FeO·Fe2O3) → Fe. The apparent reduction activation energies of CF, CF2M, CF4M, and CF8M are 46.89, 37.30, 17.30, and 29.20 kJ/mol, respectively. Sharp analysis depicted that CF2M, CF4M, and CF8M reductions are all described by 2D Avrami–Erofeev (A–E) equation (A2) in the whole process, while CF reduction is first expressed by A2 and then by 3D A–E equation (A3). Different from shrinking core model, a new kinetic model for powdery samples reduction was proposed to illustrate the relationship among reduction rates, reduction routes, and model functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Ding, X. Lv, S. Xuan, K. Tang, C. Bai, ISIJ Int. 56 (2016) 2118–2125.

    Article  Google Scholar 

  2. C. Ding, X. Lv, S. Xuan, J. Qiu, Y. Chen, C. Bai, ISIJ Int. 57 (2017) 634–642.

    Article  Google Scholar 

  3. C. Ding, X. Lv, G. Li, C. Bai, S. Xuan, K. Tang, Y. Chen, ISIJ Int. 57 (2017) 1181–1190.

    Article  Google Scholar 

  4. S. Xuan, X. Lv, C. Ding, K. Tang, G. Li, G. Pei, S. Wu, Steel Res. Int. 89 (2018) 1700452.

    Article  Google Scholar 

  5. M.K. Kalenga, A.M. Garbers-Craig, J. South Afr. Inst. Min. Metall. 110 (2010) 447–456.

    Google Scholar 

  6. T. Li, C. Sun, X. Liu, S. Song, Q. Wang, Ironmak. Steelmak. 45 (2018) 755–763.

    Article  Google Scholar 

  7. J.H. Yao, J. Yang, D. Han, X.M. Guo, Iron and Steel 50 (2015) 12–16.

    Google Scholar 

  8. S. Xuan, X. Lv, K. Tang, C. Ding, G. Li, C. Bai, in: B. Li (Eds.), TMS Annual Meeting & Exhibition, Springer, Cham, 2018, pp. 121–129.

    Google Scholar 

  9. C. Ding, X. Lv, S. Xuan, X. Lv, G. Li, K. Tang, Adv. Powder Technol. 28 (2017) 2503–2513.

    Article  Google Scholar 

  10. E.T. Turkdogan, AlChE J. 23 (1977) 612.

    Article  Google Scholar 

  11. R.C. McCune, P. Wynblatt, J. Am. Ceram. Soc. 66 (1983) 111–117.

    Article  Google Scholar 

  12. W.F.K. Wynne-Jones, H. Eyring, J. Chem. Phys. 3 (1935) 492–502.

    Article  Google Scholar 

  13. S. Vyazovkin, C.A. Wight, Thermochim. Acta 340–341 (1999) 53–68.

    Article  Google Scholar 

  14. C. Ding, X. Lv, G. Li, C. Bai, S. Xuan, K. Tang, X. Lv, Int. J. Hydrogen Energy 43 (2018) 24–36.

    Article  Google Scholar 

  15. M.I. Nasr, A.A. Omar, M.H. Khedr, A.A. El-Geassy, ISIJ Int. 35 (1995) 1043–1049.

    Article  Google Scholar 

  16. B. Perrenot, G. Widmann, J. Therm. Anal. 37 (1991) 1785–1792.

    Article  Google Scholar 

  17. T. Wiltowski, C.C. Hinckley, G.V. Smith, T. Nishizawa, M. Saporoschenko, R.H. Shiley, J.R. Webster, J. Solid State Chem. 71 (1987) 95–102.

    Article  Google Scholar 

  18. M. Avrami, J. Chem. Phys. 7 (1939) 1103–1112.

    Article  Google Scholar 

  19. M. Avrami, J. Chem. Phys. 8 (1940) 212–224.

    Article  Google Scholar 

  20. M. Avrami, J. Chem. Phys. 9 (1941) 177–184.

    Article  Google Scholar 

  21. J.H. Sharp, G.W. Brindley, B.N.N. Achar, J. Am. Ceram. Soc. 49 (1966) 379–382.

    Article  Google Scholar 

  22. H.G. McAdie, Thermochim. Acta 1 (1970) 325–333.

    Article  Google Scholar 

  23. J.A. Allen, D.E. Scaife, J. Phys. Chem. 58 (1954) 667–671.

    Article  Google Scholar 

  24. J.L. Duda, J.S. Vrentas, Ind. Eng. Chem. Fundamen. 4 (1965) 301–308.

    Article  Google Scholar 

  25. C.Y. Wen, Ind. Eng. Chem. 60 (1968) 34–54.

    Article  Google Scholar 

  26. M. Ishida, T. Shirai, J. Chem. Eng. Jpn. 3 (1970) 196–200.

    Article  Google Scholar 

  27. Q.T. Tsay, W.H. Ray, J. Szekely, AlChE J. 22 (1976) 1064–1072.

    Article  Google Scholar 

Download references

Acknowledgements

The study was performed with the financial support of the National Natural Science Foundation of China (51234010 and 51522403), the Program for New Century Excellent Talents in University and the Program for the Youth Top-Notch Talents of Chongqing (20151001), Ultrasonic Assisted Iron Ore Sintering Technology Research (cstc2014kjrc–qnrc90001), and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-yi Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Tx., Ding, Cy., Lv, Xw. et al. Reduction kinetics of MgO-doped calcium ferrites under CO–N2 atmosphere. J. Iron Steel Res. Int. 26, 1265–1272 (2019). https://doi.org/10.1007/s42243-019-00228-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00228-8

Keywords

Navigation