Skip to main content
Log in

Long-term thermal-aging stability of oxide-dispersion-strengthened ferritic steels at 753 K

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Oxide-dispersion-strengthened (ODS) ferritic steels are promising candidates for structural applications in the future nuclear reactors. The higher chromium contents of ODS ferritic steels, the better the corrosion resistance, which can meet the harsh corrosion environment of the advanced reactors. However, increasing the Cr content may also lead to the brittleness of the ODS steels when serving at high temperatures. The ODS ferritic steels with different Cr contents (12, 16 and 18 wt% Cr, respectively) were fabricated by mechanical alloying, hot isostatic pressing and forging. Mechanical properties and microstructure evolution of the ODS ferritic steels after aging at 753 K for 2000 h were investigated. It is found that both Vickers hardness and yield strength of 18%Cr ODS ferritic steel were strongly increased and the impact energy was decreased after aging at 753 K. In order to explore the reasons for changes in the mechanical properties, the fracture surfaces were characterized by scanning electron microscopy, and microstructures after aging were observed by transmission electron microscopy. The impact fracture of 18%Cr ODS ferritic steel belongs to quasi-cleavage facture, which is consistent with its very low impact energy. The grain size and dispersed oxide particles of different ODS steels are very stable. M23C6 carbide and M2C carbide were found in 12%Cr ODS steel and 16%Cr ODS steels, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.K. Kim, S. Noh, S.H. Kang, J.P. Jin, H.J. Jin, M.K. Lee, J. Jang, C.K. Rhee, J. Nucl. Eng. Technol. 48 (2016) 572-594.

    Article  Google Scholar 

  2. S. Ukai, M. Fujiwara, J. Nucl. Mater. 307 (2002) 749-757.

    Article  Google Scholar 

  3. R.L. Klueh, P.J. Maziasz, I.S. Kim, L. Heatherly, D.T. Hoelzer, N. Hashimoto, E.A. Kenik, K. Miyahara, J. Nucl. Mater. 307 (2002) 773-777.

    Article  Google Scholar 

  4. J.S. Lee, C.H. Jang, I.S. Kim, A. Kimura, J. Nucl. Mater. 367 (2007) 229-233.

    Article  Google Scholar 

  5. R.L. Klueh, D.R. Harries, High-chromium ferritic and martensitic steels for nuclear applications, 3rd edition, ASTM International, 2001.

  6. C. Capdevila, M.K. Miller, K.F. Russell, J. Chao, J.L. González-Carrasco, Mater. Sci. Eng. A 490 (2008) 277-288.

    Article  Google Scholar 

  7. O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, D.N. Seidman, Microsc. Microanal. 6 (2000) 437-444.

    Google Scholar 

  8. C. Capdevila, M.M. Aranda, R. Rementeria, J. Chao, E. Urones-Garrote, J. Aldazabal, M.K. Miller, Acta Mater. 107 (2016) 27-37.

    Article  Google Scholar 

  9. S. Kobayashi, T. Takasugi, Scripta Mater. 63 (2010) 1104-1107.

    Article  Google Scholar 

  10. A.L. Rouffié, J. Crépin, M. Sennour, B. Tanguy, A. Pineau, D. Hamon, P. Wident, S. Vincent, V. Garat, B. Fournier, J. Nucl. Mater. 445 (2014) 37-42.

    Article  Google Scholar 

  11. C. Capdevila, M.K. Miller, I. Toda, J. Chao, Mater. Sci. Eng. A 527 (2010) 7931-7938.

    Article  Google Scholar 

  12. L.M. Tan, Y.W. Zhang, J. Jia, S.B. Han, J. Iron Steel Res. Int. 28 (2016) 851-856.

    Article  Google Scholar 

  13. S.F. Li, Z.J. Zhou, P.H. Wang, H.Y. Sun, M. Wang, G.M. Zhang, Mater. Des. 90 (2016) 318-329.

    Article  Google Scholar 

  14. M.A. Meyers, K.K. Chawla, Mechanical behavior of materials, Cambridge University Press, New York, 2000.

    MATH  Google Scholar 

  15. S.F. Li, Z.J. Zhou, J.S. Jang, M. Wang, H.L. Hu, H.Y. Sun, L. Zou, G.M. Zhang, L.W. Zhang, J. Nucl. Mater. 445 (2014) 194-200.

    Article  Google Scholar 

  16. D. Hull, Fractography observing, measuring, and interpreting fracture surface topography, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  17. G.M. Zhang, Z.J. Zhou, K. Mo, P.H. Wang, Y.B. Miao, S.F. Li, M. Wang, X. Liu, M.Q. Gong, J. Almer, J. Alloy. Compd. 648 (2015) 223-228.

    Article  Google Scholar 

  18. H.T. Zhang, Y.N. Huang, H.P. Ning, C.A. Williams, A.J. London, K. Dawson, Z.L. Hong, M.J. Gorley, C.R.M. Grovenor, G.J. Tatlock, S.G. Roberts, M.J. Reece, H.X. Yan, P.S. Grant, J. Nucl. Mater. 464 (2015) 61-68.

    Article  Google Scholar 

  19. Z. Oksiuta, M. Lewandowska, K.J. Kurzydłowski, J. Mech. Mater. 67 (2013) 15-24.

    Article  Google Scholar 

  20. A. Steckmeyer, M. Praud, B. Fournier, J. Malaplate, J. Garnier, J.L. Béchade, I. Tournié, A. Tancray, A. Bougault, P. Bonnaillie, J. Nucl. Mater. 405 (2010) 95-100.

    Article  Google Scholar 

  21. S.F. Li, Z.J. Zhou, M. Li, M. Wang, G.M. Zhang, J. Alloy. Compd. 648 (2015) 39-45.

    Article  Google Scholar 

  22. A. Chauhan, D. Litvinov, Y. de Carlan, J. Aktaa, Mater. Sci. Eng. A 658 (2016) 123-134.

    Article  Google Scholar 

  23. X. Yang, B. Liao, F.R. Xiao, W. Yan, Y.Y. Shan, K. Yang, J. Iron Steel Res. Int. 24 (2017) 858-864.

    Article  Google Scholar 

  24. J.H. Kim, T.S. Byun, D.T. Hoelzer, C.H. Park, J.T. Yeom, J.K. Hong, Mater. Sci. Eng. A 559 (2013) 111-118.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks for the financial support of National Magnetic Confinement Fusion Program of China under Grant No. 2015GB121006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang-jian Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Zhou, Zj., Li, Sf. et al. Long-term thermal-aging stability of oxide-dispersion-strengthened ferritic steels at 753 K. J. Iron Steel Res. Int. 25, 776–784 (2018). https://doi.org/10.1007/s42243-018-0110-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0110-7

Keywords

Navigation