Skip to main content
Log in

Liutex based new fluid kinematics

  • Special Column on the 5th CMHL Symposium 2022 (Guest Editor De-Cheng Wan)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The traditional Cauchy-Stokes (C-S) decomposition states that the velocity gradient tensor can be decomposed into a symmetric tensor and an anti-symmetric tensor, namely the strain-rate tensor and the vorticity tensor. However, there are two problems with the C-S decomposition. One is that the anti-symmetric (vorticity) tensor cannot represent the fluid rotation or vortex. Another is that the symmetric (strain-rate) tensor cannot distinguish the stretching/compression and shear. Since vorticity cannot distinguish between the non-rotational shear and the rigid rotation, vorticity has been decomposed into a rigid rotation part called “Liutex” and an anti-symmetric shear in our previous work. A Liutex-based principal coordinate system has been proposed, and the corresponding velocity gradient tensor decomposition, called the principal decomposition, is presented in this principal coordinate system, which results in: (1) a Liutex tensor that represents rigid rotation, (2) a tensor that represents pure shear and (3) a tensor that represents stretching/compression. However, each point has its own principal coordinate system, which implies that the principal decomposition is performed in different principal coordinate systems, not the original (global) coordinate system. To address this issue, the principal decomposition in the original coordinate system is derived in this paper, and, therefore, provides a new kinematic approach to study the local rigid rotation, pure shear, and stretching/compression. The principal decomposition is unique, Galilean invariant and has clear physical meaning. The new velocity gradient tensor decomposition could become a foundation for new fluid kinematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Truesdell C. The Kinematics of vorticity [M]. Bloomington, UK: Indiana University Press, 1954.

    MATH  Google Scholar 

  2. Galilei G. Dialogue concerning the two chief world systems [M]. 1632 (Reference Text: Stillman Drake, University of California Press, Berkeley and Los Angeles, 1967 Publisher: Modern Library, New edition (October 2, 2001).

    Google Scholar 

  3. Gao Y., Liu C. Rortex and comparison with eigenvalue-based vortex identification criteria [J]. Physics of Fluids, 2018, 30(8): 85107.

    Article  Google Scholar 

  4. Liu C., Gao Y., Tian S. et al. Rortex-A new vortex vector definition and vorticity tensor and vector decompositions [J]. Physics of Fluids, 2018, 30(3): 035103.

    Article  Google Scholar 

  5. Liu C., Gao Y. S., Dong X. R. et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, 31(2): 205–223.

    Article  Google Scholar 

  6. Kolář V. Vortex identification: New requirements and limitations [J]. International Journal of Heat and Fluid Flow, 2007, 28(4): 638–652.

    Article  Google Scholar 

  7. Helmholtz H. On the integrals of the hydrodynamic equations corresponding to vortex motions [J]. Journal Für Die Reine Und Angewandte Mathematik, 1858, 55: 22–25(in German).

    MathSciNet  Google Scholar 

  8. Lamb H. Hydrodynamics [M]. Cambridge, UK: Cambridge University Press, 1932.

    MATH  Google Scholar 

  9. Majda A. J., Bertozzi A. L., Ogawa A. Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics [J]. Applied Mechanics Reviews, 2002, 55(4): B77–B78.

    Google Scholar 

  10. Wu J. Z., Ma H. Y., Zhou M. D. Vorticity and vortex dynamics [M]. Berlin, Germany: Springer, 2006.

    Book  Google Scholar 

  11. Saffman P. G. Vortex dynamics [M]. Cambridge, UK: Cambridge University Press, 1992.

    MATH  Google Scholar 

  12. Zhou J., Adrian R. J., Balachandar S. et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow [J]. Journal of Fluid Mechanics, 1999, 387: 353–396.

    Article  MathSciNet  MATH  Google Scholar 

  13. Pirozzoli S., Grasso F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25 [J]. Physics of Fluids, 2006, 18(6): 65113.

    Article  Google Scholar 

  14. Wang Y., Yang Y., Yang G. et al. DNS study on vortex and vorticity in late boundary layer transition [J]. Communications in Computational Physics, 2017, 22(2): 441–459.

    Article  MathSciNet  MATH  Google Scholar 

  15. Robinson S. K. Coherent motions in the turbulent boundary layer [J]. Annual Review of Fluid Mechanics, 1991, 23(1): 601–639.

    Article  Google Scholar 

  16. Gao Y. S., Liu J. M., Yu Y. et al. A Liutex based definition and identification of vortex core center lines [J]. Journal of Hydrodynamics, 2019, 31(3): 445–454.

    Article  Google Scholar 

  17. Epps B. Review of vortex identification methods [C]. 55th AIAA Aerospace Sciences Meeting, Reston, Virginia, USA, 2017.

    Book  Google Scholar 

  18. Kolár V., Šístek J., Cirak F. et al. Average corotation of line segments near a point and vortex identification [J]. AIAA Journal, 2013, 51(11): 2678–2694.

    Article  Google Scholar 

  19. Li Z., Zhang X. W., He F. Evaluation of vortex criteria by virtue of the quadruple decomposition of velocity gradient tensor [J]. Acta Physica Sinica, 2014, 63(5): 054704.

    Article  Google Scholar 

  20. Keylock C. J. The Schur decomposition of the velocity gradient tensor for turbulent flows [J]. Journal of Fluid Mechanics, 2018, 848: 876–905.

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu Y., Alvarez O., Patel V. et al. Introduction of Liutex and third generation of vortex identification methods [C]. AIAA SCITECH 2022 Forum, Reston, Virginia, USA, 2022.

    Book  Google Scholar 

  22. Wang Y., Gao Y., Liu C. Letter: Galilean invariance of Rortex [J]. Physics of Fluids, 2018, 30(11): 111701.

    Article  Google Scholar 

  23. Wang Y. Q., Gao Y. S., Liu J. M. et al. Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition [J]. Journal of Hydrodynamics, 2019, 31(3): 464–474.

    Article  Google Scholar 

  24. Xu W. Q., Wang Y. Q., Gao Y. S. et al. Liutex similarity in turbulent boundary layer [J]. Journal of Hydrodynamics, 2019, 31(6): 1259–1262.

    Article  Google Scholar 

  25. Xu H., Cai X. S., Liu C. Liutex (vortex) core definition and automatic identification for turbulence vortex structures [J]. Journal of Hydrodynamics, 2019, 31(5): 857–863.

    Article  Google Scholar 

  26. Liu J., Liu C. Modified normalized Rortex/vortex identification method [J]. Physics of Fluids, 2019, 31(6): 061704.

    Article  Google Scholar 

  27. Dong X., Gao Y., Liu C. New normalized Rortex/vortex identification method [J]. Physics of Fluids, 2019, 31(1): 011701.

    Article  Google Scholar 

  28. Liu C. An objective version of the Rortex vector for vortex identification [J]. Physics of Fluids, 2019, 31(6): 065112.

    Article  Google Scholar 

  29. Gao Y., Liu C. Rortex based velocity gradient tensor decomposition [J]. Physics of Fluids, 2019, 31(1): 011704.

    Article  MathSciNet  Google Scholar 

  30. Liu C. New fluid kinematics [J]. Journal of Hydrodynanics, 2021, 33(3): 395–399.

    Article  Google Scholar 

  31. Wang C., Wang F., An D. et al. A general alternate loading technique and its applications in the inverse designs of centrifugal and mixed-flow pump impellers [J]. Science China Technological Sciences, 2021, 64(4): 898–918.

    Article  Google Scholar 

  32. Wang C., Wang F., Xie L. et al. On the vortical characteristics of horn-like vortices in stator corner separation flow in an axial flow pump [J]. Journal of Fluids Engineering, 2021, 143(6): 061201.

    Article  Google Scholar 

  33. Yan D., Wei Z., Xie K. et al. Study of the vortex structure of a subsonic jet in an axisymmetric transonic nozzle [J]. Physics of Fluids, 2020, 32(7): 076109.

    Article  Google Scholar 

  34. Zhou Y., Clark T. T., Clark D. S. et al. Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities [J]. Physics of Plasmas, 2019, 26(8): 080901.

    Article  Google Scholar 

  35. Zhou Y. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I [J]. Physics Reports, 2017, 720-722: 1–136.

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou Y. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II [J]. Physics Reports, 2017, 723-725: 1–160.

    Article  MathSciNet  MATH  Google Scholar 

  37. Kaczorowski M., Chong K. L., Xia K. Q. Turbulent flow in the bulk of Rayleigh-Bénard convection: aspect-ratio dependence of the small-scale properties [J]. Journal of Fluid Mechanics, 2014, 747: 73–102.

    Article  Google Scholar 

  38. Xi H. D., Zhang Y. B., Hao J. T. et al. Higher-order flow modes in turbulent Rayleigh-Bénard convection [J]. Journal of Fluid Mechanics, 2016, 805: 31–51.

    Article  MathSciNet  Google Scholar 

  39. Hunt J. C. R., Wray A. A., Moin P. Eddies, stream, and convergence zones in turbulent flows [R]. Proceeding of the Summer Program in Center for Turbulence Research, 1988, 193–208.

    Google Scholar 

  40. Chong M. S., Perry A. E., Cantwell B. J. A general classification of three-dimensional flow fields [J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 765–777.

    Article  MathSciNet  Google Scholar 

  41. Jeong J., Hussain F. On the identification of a vortex [J]. Journal of Fluid. Mechanics, 1995, 285: 69–94.

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu C., Yan Y., Lu P. Physics of turbulence generation and sustenance in a boundary layer [J]. Computers and Fluids, 2014, 102: 353–384.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the support by the UTA Department of Mathematics which houses the UTA Vortex and Turbulence Research Team. The authors are also grateful to Texas Advanced Computing Center (TACC) for providing computation time. The DNSUTA code was released by Chaoqun Liu in 2009 and the Liutex code was released by Chaoqun Liu in 2018 which can be downloaded from the UTA web site at https://www.uta.edu/math/cnsm/public_html/cnsm/cnsm.html.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoqun Liu.

Additional information

Biography: Chaoqun Liu, Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Yu, Y. & Gao, Ys. Liutex based new fluid kinematics. J Hydrodyn 34, 355–371 (2022). https://doi.org/10.1007/s42241-022-0046-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-022-0046-z

Key words

Navigation