Skip to main content
Log in

Multi-trial Vector-based Whale Optimization Algorithm

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The Whale Optimization Algorithm (WOA) is a swarm intelligence metaheuristic inspired by the bubble-net hunting tactic of humpback whales. In spite of its popularity due to simplicity, ease of implementation, and a limited number of parameters, WOA’s search strategy can adversely affect the convergence and equilibrium between exploration and exploitation in complex problems. To address this limitation, we propose a new algorithm called Multi-trial Vector-based Whale Optimization Algorithm (MTV-WOA) that incorporates a Balancing Strategy-based Trial-vector Producer (BS_TVP), a Local Strategy-based Trial-vector Producer (LS_TVP), and a Global Strategy-based Trial-vector Producer (GS_TVP) to address real-world optimization problems of varied degrees of difficulty. MTV-WOA has the potential to enhance exploitation and exploration, reduce the probability of being stranded in local optima, and preserve the equilibrium between exploration and exploitation. For the purpose of evaluating the proposed algorithm's performance, it is compared to eight metaheuristic algorithms utilizing CEC 2018 test functions. Moreover, MTV-WOA is compared with well-stablished, recent, and WOA variant algorithms. The experimental results demonstrate that MTV-WOA surpasses comparative algorithms in terms of the accuracy of the solutions and convergence rate. Additionally, we conducted the Friedman test to assess the gained results statistically and observed that MTV-WOA significantly outperforms comparative algorithms. Finally, we solved five engineering design problems to demonstrate the practicality of MTV-WOA. The results indicate that the proposed MTV-WOA can efficiently address the complexities of engineering challenges and provide superior solutions that are superior to those of other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Algorithm 1

Similar content being viewed by others

Data Availability

The datasets used during the current study are available from the corresponding author upon reasonable request.

References

  1. Talbi, E. G. (2009). Metaheuristics: from design to implementation (Vol. 74). Wiley.

    Google Scholar 

  2. Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics. Information Sciences, 237, 82–117.

    MathSciNet  Google Scholar 

  3. Sörensen, K., & Glover, F. (2013). Metaheuristics. Encyclopedia of Operations Research and Management Science, 62, 960–970.

    Google Scholar 

  4. Bandaru, S., & Deb, K. (2016). Metaheuristic techniques. In Decision sciences (pp. 709–766). CRC Press.

  5. Gupta, S., Deep, K., & Mirjalili, S. (2020). An efficient equilibrium optimizer with mutation strategy for numerical optimization. Applied Soft Computing, 96, 106542.

    Google Scholar 

  6. Mohapatra, P., Das, K. N., & Roy, S. (2017). A modified competitive swarm optimizer for large scale optimization problems. Applied Soft Computing, 59, 340–362.

    Google Scholar 

  7. Kovačević, M., Madić, M., & Radovanović, M. (2013). Software prototype for validation of machining optimization solutions obtained with meta-heuristic algorithms. Expert Systems with Applications, 40(17), 6985–6996.

    Google Scholar 

  8. Sun, Y., Yang, T., & Liu, Z. (2019). A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems. Applied Soft Computing, 85, 105744.

    Google Scholar 

  9. Panda, S., & Padhy, N. P. (2008). Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Applied Soft Computing, 8(4), 1418–1427.

    Google Scholar 

  10. Panwar, K., & Deep, K. (2021). Discrete Grey Wolf Optimizer for symmetric travelling salesman problem. Applied Soft Computing, 105, 107298.

    Google Scholar 

  11. Nadimi-Shahraki, M. H., Taghian, S., & Mirjalili, S. (2021). An improved grey wolf optimizer for solving engineering problems. Expert Systems with Applications, 166, 113917.

    Google Scholar 

  12. Talbi, E.-G. (2021). Machine learning into metaheuristics: A survey and taxonomy. ACM Computing Surveys (CSUR), 54(6), 1–32.

    Google Scholar 

  13. Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: Theory and application. Advances in Engineering Software, 105, 30–47.

    Google Scholar 

  14. Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Editorial Commentary, (3), 95–99.

  15. Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    MathSciNet  Google Scholar 

  16. Rechenberg, I. (1973). Evolution strategy: Optimization of technical systems by means of biological evolution. Fromman-Holzboog Stuttgart, 104, 15–16.

    Google Scholar 

  17. Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan.

  18. Yang, X.-S. (2010). A new metaheuristic bat-inspired algorithm. In J. R. González, D. A. Pelta, C. Cruz, G. Terrazas, & N. Krasnogor (Eds.), Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) (pp. 65–74). Berlin, Heidelberg: Springer.

    Google Scholar 

  19. Rajabioun, R. (2011). Cuckoo optimization algorithm. Applied Soft Computing, 11(8), 5508–5518.

    Google Scholar 

  20. Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831–4845.

    MathSciNet  Google Scholar 

  21. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Google Scholar 

  22. Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, 228–249.

    Google Scholar 

  23. Arora, S., & Singh, S. (2019). Butterfly optimization algorithm: A novel approach for global optimization. Soft Computing, 23(3), 715–734.

    Google Scholar 

  24. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  25. Hashim, F. A., Houssein, E. H., Hussain, K., Mabrouk, M. S., & Al-Atabany, W. (2022). Honey badger algorithm: New metaheuristic algorithm for solving optimization problems. Mathematics and Computers in Simulation, 192, 84–110.

    MathSciNet  Google Scholar 

  26. Houssein, E. H., Oliva, D., Samee, N. A., Mahmoud, N. F., & Emam, M. M. (2023). Liver cancer algorithm: A novel bio-inspired optimizer. Computers in Biology and Medicine, 165, 107389.

    Google Scholar 

  27. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

    Google Scholar 

  28. Haghnegahdar, L., & Wang, Y. (2020). A whale optimization algorithm-trained artificial neural network for smart grid cyber intrusion detection. Neural Computing and Applications, 32, 9427–9441.

    Google Scholar 

  29. Priyanga, P., Pattankar, V. V., & Sridevi, S. (2021). A hybrid recurrent neural network-logistic chaos-based whale optimization framework for heart disease prediction with electronic health records. Computational Intelligence, 37(1), 315–343.

    MathSciNet  Google Scholar 

  30. Gul, F., Mir, I., Rahiman, W., & Islam, T. U. (2021). Novel implementation of multi-robot space exploration utilizing coordinated multi-robot exploration and frequency modified whale optimization algorithm. IEEE Access, 9, 22774–22787.

    Google Scholar 

  31. Miao, Y., Zhao, M., Makis, V., & Lin, J. (2019). Optimal swarm decomposition with whale optimization algorithm for weak feature extraction from multicomponent modulation signal. Mechanical Systems and Signal Processing, 122, 673–691.

    Google Scholar 

  32. Mohammed, H., & Rashid, T. (2020). A novel hybrid GWO with WOA for global numerical optimization and solving pressure vessel design. Neural Computing and Applications, 32(18), 14701–14718.

    Google Scholar 

  33. Chakraborty, S., Saha, A. K., Sharma, S., Chakraborty, R., & Debnath, S. (2023). A hybrid whale optimization algorithm for global optimization. Journal of Ambient Intelligence and Humanized Computing, 14(1), 431–467.

    Google Scholar 

  34. Zhang, X., & Wen, S. (2021). Hybrid whale optimization algorithm with gathering strategies for high-dimensional problems. Expert Systems with Applications, 179, 115032.

    Google Scholar 

  35. Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S., Abualigah, L., Abd Elaziz, M., & Oliva, D. (2021). EWOA-OPF: Effective whale optimization algorithm to solve optimal power flow problem. Electronics, 10(23), 2975.

    Google Scholar 

  36. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

    Google Scholar 

  37. Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S., & Faris, H. (2020). MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems. Applied Soft Computing, 97, 106761.

    Google Scholar 

  38. Awad, N., Ali, M., Liang, J., Qu, B., & Suganthan, P. (2016). Problem definitions and evaluation criteria for the cec 2017 special sessionand competition on single objective real-parameter numerical optimization. In Nanyang Technological University, Jordan University of Science and Technology and Zhengzhou University, Singapore and Zhenzhou, China, Tech. Rep, 201611.

  39. Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849–872.

    Google Scholar 

  40. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering, 376, 113609.

    MathSciNet  Google Scholar 

  41. Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.

    Google Scholar 

  42. Mohamed, A. W., Hadi, A. A., Fattouh, A. M., & Jambi, K. M. (2017). LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems. In 2017 IEEE Congress on evolutionary computation (CEC), Donostia, Spain.

  43. Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2017). Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In 2017 IEEE congress on evolutionary computation (CEC), Donostia, Spain.

  44. Hashim, F. A., & Hussien, A. G. (2022). Snake optimizer: A novel meta-heuristic optimization algorithm. Knowledge-Based Systems, 242, 108320.

    Google Scholar 

  45. Dehghani, M., Montazeri, Z., Trojovská, E., & Trojovský, P. (2023). Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowledge-Based Systems, 259, 110011.

    Google Scholar 

  46. Nadimi-Shahraki, M. H., Zamani, H., & Mirjalili, S. (2022). Enhanced whale optimization algorithm for medical feature selection: A COVID-19 case study. Computers in Biology and Medicine, 148, 105858.

    Google Scholar 

  47. Rajesh, C., & Kumar, S. (2022). An evolutionary block based network for medical image denoising using Differential Evolution. Applied Soft Computing, 121, 108776.

    Google Scholar 

  48. Nadimi-Shahraki, M. H., Taghian, S., Zamani, H., Mirjalili, S., & Elaziz, M. A. (2023). MMKE: Multi-trial vector-based monkey king evolution algorithm and its applications for engineering optimization problems. PLoS One, 18(1), e0280006.

    Google Scholar 

  49. Abdelkader, E. M., Moselhi, O., Marzouk, M., & Zayed, T. (2022). An exponential chaotic differential evolution algorithm for optimizing bridge maintenance plans. Automation in Construction, 134, 104107.

    Google Scholar 

  50. Zou, D., & Gong, D. (2022). Differential evolution based on migrating variables for the combined heat and power dynamic economic dispatch. Energy, 238, 121664.

    Google Scholar 

  51. Zhang, X., Peng, H., Zhang, J., & Wang, Y. (2023). A cost-sensitive attention temporal convolutional network based on adaptive top-k differential evolution for imbalanced time-series classification. Expert Systems with Applications, 213, 119073.

    Google Scholar 

  52. Wang, G.-G., Deb, S., & Cui, Z. (2019). Monarch butterfly optimization. Neural Computing and Applications, 31(7), 1995–2014.

    Google Scholar 

  53. Braik, M. S. (2021). Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems. Expert Systems with Applications, 174, 114685.

    Google Scholar 

  54. MiarNaeimi, F., Azizyan, G., & Rashki, M. (2021). Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems. Knowledge-Based Systems, 213, 106711.

    Google Scholar 

  55. Jiang, Y., Wu, Q., Zhu, S., & Zhang, L. (2022). Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems. Expert Systems with Applications, 188, 116026.

    Google Scholar 

  56. Braik, M., Hammouri, A., Atwan, J., Al-Betar, M. A., & Awadallah, M. A. (2022). White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowledge-Based Systems, 243, 108457.

    Google Scholar 

  57. Zhao, W., Wang, L., & Mirjalili, S. (2022). Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Computer Methods in Applied Mechanics and Engineering, 388, 114194.

    MathSciNet  Google Scholar 

  58. Taghian, S., & Nadimi-Shahraki, M. H. (2019). Binary sine cosine algorithms for feature selection from medical data. arXiv preprint arXiv:1911.07805.

  59. Erol, O. K., & Eksin, I. (2006). A new optimization method: Big bang–big crunch. Advances in Engineering Software, 37(2), 106–111.

    Google Scholar 

  60. Kaveh, A., & Talatahari, S. (2010). A novel heuristic optimization method: Charged system search. Acta Mechanica, 213(3), 267–289.

    Google Scholar 

  61. Kaveh, A., & Khayatazad, M. (2012). A new meta-heuristic method: Ray optimization. Computers & Structures, 112, 283–294.

    Google Scholar 

  62. Kaveh, A., & Mahdavi, V. R. (2014). Colliding bodies optimization: A novel meta-heuristic method. Computers & Structures, 139, 18–27.

    Google Scholar 

  63. Zhao, W., Wang, L., & Zhang, Z. (2019). Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowledge-Based Systems, 163, 283–304.

    Google Scholar 

  64. Wei, Z., Huang, C., Wang, X., Han, T., & Li, Y. (2019). Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access, 7, 66084–66109.

    Google Scholar 

  65. Kaveh, A., Akbari, H., & Hosseini, S. M. (2020). Plasma generation optimization: A new physically-based metaheuristic algorithm for solving constrained optimization problems. Engineering Computations, 38(4), 1554–1606.

    Google Scholar 

  66. Rao, R. V., Savsani, V. J., & Vakharia, D. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315.

    Google Scholar 

  67. Moosavi, S. H. S., & Bardsiri, V. K. (2019). Poor and rich optimization algorithm: A new human-based and multi populations algorithm. Engineering Applications of Artificial Intelligence, 86, 165–181.

    Google Scholar 

  68. Dai, C., Zhu, Y., & Chen, W. (2006). Seeker optimization algorithm. In International conference on computational and information science, Guangzhou, China.

  69. Wang, C., Zhang, X., Niu, Y., Gao, S., Jiang, J., Zhang, Z., & Dong, H. (2022). Dual-population social group optimization algorithm based on human social group behavior law. IEEE Transactions on Computational Social Systems, 10(1), 166–177.

    Google Scholar 

  70. Panwar, D., Saini, G., & Agarwal, P. (2022). Human eye vision algorithm (HEVA): A novel approach for the optimization of combinatorial problems. In Artificial Intelligence in Healthcare (pp. 61–71). Springer.

  71. Houssein, E. H., Helmy, B.E.-D., Elngar, A. A., Abdelminaam, D. S., & Shaban, H. (2021). An improved tunicate swarm algorithm for global optimization and image segmentation. IEEE Access, 9, 56066–56092.

    Google Scholar 

  72. Houssein, E. H., Helmy, B.E.-D., Oliva, D., Jangir, P., Premkumar, M., Elngar, A. A., & Shaban, H. (2022). An efficient multi-thresholding based COVID-19 CT images segmentation approach using an improved equilibrium optimizer. Biomedical Signal Processing and Control, 73, 103401.

    Google Scholar 

  73. Yu, X., & Wu, X. (2022). Ensemble grey wolf Optimizer and its application for image segmentation. Expert Systems with Applications, 209, 118267.

    Google Scholar 

  74. Casas-Ordaz, A., Oliva, D., Navarro, M. A., Ramos-Michel, A., & Pérez-Cisneros, M. (2023). An improved opposition-based Runge Kutta optimizer for multilevel image thresholding. The Journal of Supercomputing, 1–108.

  75. Nadimi-Shahraki, M. H., Banaie-Dezfouli, M., Zamani, H., Taghian, S., & Mirjalili, S. (2021). B-MFO: A binary moth-flame optimization for feature selection from medical datasets. Computers, 10(11), 136.

    Google Scholar 

  76. Wang, J., Lin, D., Zhang, Y., & Huang, S. (2022). An adaptively balanced grey wolf optimization algorithm for feature selection on high-dimensional classification. Engineering Applications of Artificial Intelligence, 114, 105088.

    Google Scholar 

  77. Huang, Y., Li, F., Bao, G., Xiao, Q., & Wang, H. (2022). Modeling the effects of biodiesel chemical composition on iodine value using novel machine learning algorithm. Fuel, 316, 123348.

    Google Scholar 

  78. Kalita, D. J., Singh, V. P., & Kumar, V. (2022). Two-way threshold-based intelligent water drops feature selection algorithm for accurate detection of breast cancer. Soft Computing, 26(5), 2277–2305.

    Google Scholar 

  79. Chatterjee, S., Saha, D., Sen, S., Oliva, D., & Sarkar, R. (2023). Moth-flame optimization based deep feature selection for facial expression recognition using thermal images. Multimedia Tools and Applications, 1–24.

  80. Fang, L., & Liang, X. (2023). A novel method based on nonlinear binary grasshopper whale optimization algorithm for feature selection. Journal of Bionic Engineering, 20(1), 237–252.

    Google Scholar 

  81. Ramadan, A.-E., Kamel, S., Khurshaid, T., Oh, S.-R., & Rhee, S.-B. (2021). Parameter extraction of three diode solar photovoltaic model using improved Grey Wolf optimizer. Sustainability, 13(12), 6963.

    Google Scholar 

  82. Xie, Q., Guo, Z., Liu, D., Chen, Z., Shen, Z., & Wang, X. (2021). Optimization of heliostat field distribution based on improved Gray Wolf optimization algorithm. Renewable Energy, 176, 447–458.

    Google Scholar 

  83. Yesilbudak, M. (2021). Parameter extraction of photovoltaic cells and modules using grey wolf optimizer with dimension learning-based hunting search strategy. Energies, 14(18), 5735.

    Google Scholar 

  84. Devarapalli, R., Rao, B. V., & Al-Durra, A. (2022). Optimal parameter assessment of solar photovoltaic module equivalent circuit using a novel enhanced hybrid GWO-SCA algorithm. Energy Reports, 8, 12282–12301.

    Google Scholar 

  85. Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S., Zamani, H., & Bahreininejad, A. (2022). GGWO: Gaze cues learning-based grey wolf optimizer and its applications for solving engineering problems. Journal of Computational Science, 61, 101636.

    Google Scholar 

  86. Ma, C., Huang, H., Fan, Q., Wei, J., Du, Y., & Gao, W. (2022). Grey wolf optimizer based on aquila exploration method. Expert Systems with Applications, 205, 117629.

    Google Scholar 

  87. Pan, J.-S., Zhang, L.-G., Wang, R.-B., Snášel, V., & Chu, S.-C. (2022). Gannet optimization algorithm: A new metaheuristic algorithm for solving engineering optimization problems. Mathematics and Computers in Simulation, 202, 343–373.

    MathSciNet  Google Scholar 

  88. Yuan, Y., Shen, Q., Wang, S., Ren, J., Yang, D., Yang, Q., Mu, X. (2023). Coronavirus mask protection algorithm: A new bio-inspired optimization algorithm and its applications. Journal of Bionic Engineering, 1–19.

  89. Mesquita, R., & Gaspar, P. D. (2021). A novel path planning optimization algorithm based on particle swarm optimization for UAVs for bird monitoring and repelling. Processes, 10(1), 62.

    Google Scholar 

  90. Javaheri, D., Gorgin, S., Lee, J.-A., & Masdari, M. (2022). An improved discrete harris hawk optimization algorithm for efficient workflow scheduling in multi-fog computing. Sustainable Computing: Informatics and Systems, 36, 100787.

    Google Scholar 

  91. Wu, J., Zhang, P.-W., Wang, Y., & Shi, J. J. (2022). Integrated aviation model and metaheuristic algorithm for hub-and-spoke network design and airline fleet planning. Transportation Research Part E: Logistics and Transportation Review, 164, 102755.

    Google Scholar 

  92. Sa, A., Yv, R. R., & Sadiq, A. S. (2022). Traffic flow forecasting using natural selection based hybrid Bald Eagle Search—Grey Wolf optimization algorithm. PLoS One, 17(9), e0275104.

    Google Scholar 

  93. Kaur, N., Kaur, L., & Cheema, S. S. (2021). An enhanced version of Harris Hawks optimization by dimension learning-based hunting for breast cancer detection. Scientific Reports, 11(1), 1–26.

    Google Scholar 

  94. Mohakud, R., & Dash, R. (2022). Skin cancer image segmentation utilizing a novel EN-GWO based hyper-parameter optimized FCEDN. Journal of King Saud University-Computer and Information Sciences.

  95. Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S., & Abualigah, L. (2022). Binary aquila optimizer for selecting effective features from medical data: A COVID-19 case study. Mathematics, 10(11), 1929.

    Google Scholar 

  96. Duan, Y., Liu, C., Li, S., Guo, X., & Yang, C. (2021). Manta ray foraging and Gaussian mutation-based elephant herding optimization for global optimization. Engineering with Computers, 1–41.

  97. Jia, H., Sun, K., Zhang, W., & Leng, X. (2022). An enhanced chimp optimization algorithm for continuous optimization domains. Complex & Intelligent Systems, 8(1), 65–82.

    Google Scholar 

  98. Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S., Ewees, A. A., Abualigah, L., & Abd Elaziz, M. (2021). Mtv-mfo: Multi-trial vector-based moth-flame optimization algorithm. Symmetry, 13(12), 2388.

    Google Scholar 

  99. Zhong, C., & Li, G. (2022). Comprehensive learning Harris hawks-equilibrium optimization with terminal replacement mechanism for constrained optimization problems. Expert Systems with Applications, 192, 116432.

    Google Scholar 

  100. Singh, H., Singh, B., & Kaur, M. (2022). An improved elephant herding optimization for global optimization problems. Engineering with Computers, 38(4), 3489–3521.

    Google Scholar 

  101. Wang, Z., Ding, H., Yang, Z., Li, B., Guan, Z., & Bao, L. (2022). Rank-driven salp swarm algorithm with orthogonal opposition-based learning for global optimization. Applied Intelligence, 52(7), 7922–7964.

    Google Scholar 

  102. Ma, J., Hao, Z., & Sun, W. (2022). Enhancing sparrow search algorithm via multi-strategies for continuous optimization problems. Information Processing & Management, 59(2), 102854.

    Google Scholar 

  103. Nadimi-Shahraki, M. H. (2023). An effective hybridization of quantum-based avian navigation and bonobo optimizers to solve numerical and mechanical engineering problems. Journal of Bionic Engineering, 20(3), 1361–1385.

    Google Scholar 

  104. Hosseini, E., Sadiq, A. S., Ghafoor, K. Z., Rawat, D. B., Saif, M., & Yang, X. (2021). Volcano eruption algorithm for solving optimization problems. Neural Computing and Applications, 33, 2321–2337.

    Google Scholar 

  105. Meng, A., Zeng, C., Wang, P., Chen, D., Zhou, T., Zheng, X., & Yin, H. (2021). A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem. Energy, 225, 120211.

    Google Scholar 

  106. Shaheen, M. A., Hasanien, H. M., & Al-Durra, A. (2021). Solving of optimal power flow problem including renewable energy resources using HEAP optimization algorithm. IEEE Access, 9, 35846–35863.

    Google Scholar 

  107. Jiang, Y., Wu, Q., Zhang, G., Zhu, S., & Xing, W. (2021). A diversified group teaching optimization algorithm with segment-based fitness strategy for unmanned aerial vehicle route planning. Expert Systems with Applications, 185, 115690.

    Google Scholar 

  108. Liu, P., Hendalianpour, A., Feylizadeh, M., & Pedrycz, W. (2022). Mathematical modeling of vehicle routing problem in omni-channel retailing. Applied Soft Computing, 131, 109791.

    Google Scholar 

  109. Nadimi-Shahraki, M. H., Moeini, E., Taghian, S., & Mirjalili, S. (2021). DMFO-CD: A discrete moth-flame optimization algorithm for community detection. Algorithms, 14(11), 314.

    Google Scholar 

  110. Koc, I. (2022). A fast community detection algorithm based on coot bird metaheuristic optimizer in social networks. Engineering Applications of Artificial Intelligence, 114, 105202.

    Google Scholar 

  111. Nadimi-Shahraki, M. H., Moeini, E., Taghian, S., & Mirjalili, S. (2023). Discrete improved grey wolf optimizer for community detection. Journal of Bionic Engineering, 1–28.

  112. Hashemi, M., Javaheri, D., Sabbagh, P., Arandian, B., & Abnoosian, K. (2021). A multi-objective method for virtual machines allocation in cloud data centres using an improved grey wolf optimization algorithm. IET Communications, 15(18), 2342–2353.

    Google Scholar 

  113. Gao, Y., Yang, B., Wang, S., Zhang, Z., & Tang, X. (2022). Bi-objective service composition and optimal selection for cloud manufacturing with QoS and robustness criteria. Applied Soft Computing, 128, 109530.

    Google Scholar 

  114. Sing, R., Bhoi, S. K., Panigrahi, N., Sahoo, K. S., Jhanjhi, N., & AlZain, M. A. (2022). A whale optimization algorithm based resource allocation scheme for cloud-fog based IoT applications. Electronics, 11(19), 3207.

    Google Scholar 

  115. Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic organisms search: A new metaheuristic optimization algorithm. Computers & Structures, 139, 98–112.

    Google Scholar 

  116. Fan, Q., Chen, Z., Zhang, W., & Fang, X. (2020). ESSAWOA: Enhanced whale optimization algorithm integrated with salp swarm algorithm for global optimization. Engineering with Computers, 1–18.

  117. Singh, A. (2019). Laplacian whale optimization algorithm. International Journal of System Assurance Engineering and Management, 10(4), 713–730.

    Google Scholar 

  118. Yan, Z., Zhang, J., Zeng, J., & Tang, J. (2021). Nature-inspired approach: An enhanced whale optimization algorithm for global optimization. Mathematics and Computers in Simulation, 185, 17–46.

    MathSciNet  Google Scholar 

  119. Saafan, M. M., & El-Gendy, E. M. (2021). IWOSSA: An improved whale optimization salp swarm algorithm for solving optimization problems. Expert Systems with Applications, 176, 114901.

    Google Scholar 

  120. Kalananda, V. K. R. A., & Komanapalli, V. L. N. (2021). A combinatorial social group whale optimization algorithm for numerical and engineering optimization problems. Applied Soft Computing, 99, 106903.

    Google Scholar 

  121. Satapathy, S., & Naik, A. (2016). Social group optimization (SGO): A new population evolutionary optimization technique. Complex & Intelligent Systems, 2(3), 173–203.

    Google Scholar 

  122. Chen, H., Li, W., & Yang, X. (2020). A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems. Expert Systems with Applications, 158, 113612.

    Google Scholar 

  123. Fan, Q., Chen, Z., Li, Z., Xia, Z., Yu, J., & Wang, D. (2021). A new improved whale optimization algorithm with joint search mechanisms for high-dimensional global optimization problems. Engineering with Computers, 37(3), 1851–1878.

    Google Scholar 

  124. Liang, X., & Zhang, Z. (2022). A whale optimization algorithm with convergence and exploitability enhancement and its application. Mathematical Problems in Engineering, 2022.

  125. Sun, G., Shang, Y., & Zhang, R. (2022). An efficient and robust improved whale optimization algorithm for large scale global optimization problems. Electronics, 11(9), 1475.

    Google Scholar 

  126. Yang, W., Xia, K., Fan, S., Wang, L., Li, T., Zhang, J., & Feng, Y. (2022). A multi-strategy Whale optimization algorithm and its application. Engineering Applications of Artificial Intelligence, 108, 104558.

    Google Scholar 

  127. Kannan, B., & Kramer, S. N. (1994). An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. Journal of Mechanical Design, 116(2), 405–411.

    Google Scholar 

  128. Nowacki, H. (1974). Optimization in pre-contract ship design. In: Fujita, Y., Lind, K., Williams, T.J. (eds) Computer Applications in the Automation of Shipyard Operation and Ship Design, vol. 2 (pp. 327–338).

  129. Coello, C. A. C. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 41(2), 113–127.

    Google Scholar 

  130. Arora, J. S. (2004). Introduction to optimum design. Elsevier.

    Google Scholar 

  131. Golinski, J. (1973). An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory, 8(4), 419–436.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad H. Nadimi-Shahraki.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

See Tables 8, 9, 10, 11, 12; Figs. 3, 4.

Table 8 The unimodal functions' average error
Table 9 The multimodal functions' average error
Table 10 The hybrid functions' average error
Table 11 The composition functions' average error
Table 12 The Friedman test results
Fig. 3
figure 3

Convergence curves for some unimodal and multimodal functions

Fig. 4
figure 4

Convergence curves for some hybrid and composition functions

Appendix B

See Figs. 5, 6; Tables 13, 14, 15.

Fig. 5
figure 5

The impact analysis of using the proposed TVPs

Table 13 The comparison of MTV-WOA with well-stablished, recent, and WOA variant algorithms
Table 14 Results of Wilcoxon's test on D = 10
Fig. 6
figure 6

Convergence comparison of MTV-WOA with flagship, recent, and WOA variant algorithms

Table 15 The results of using proposed TVPs for improving PSO and LSHADE-SPACMA algorithms

Appendix C

3.1 C.1. Pressure Vessel Design Problem

The major aim of this problem, represented in Fig. 7, is optimizing the cost of material, forming, and welding a vessel. The problem has four variables Ts, Th, R, and L. The mathematical representation of this problem is provided in Eq. (24) (Figs. 7, 8, 9, 10, 11).

$${\text{Consider}}\;\vec{x} = \left[ {x_{1} x_{2} x_{3} x_{4} } \right] = \left[ {T_{s} { }T_{h} { }R{ }L} \right]$$
$${\text{Minimize}}\;f\left( {\vec{x}} \right) = 0.6224x_{1} x_{3} x_{4} + 1.7781x_{2} x_{3}^{2} + 3.1661x_{1}^{2} x_{4} + 19.84x_{1}^{2} x_{3}$$

\({\text{Subject to}}\;g_{1} \left( {\vec{x}} \right) = - x_{1} + 0.0193x_{3} \le 0,\;g_{2} \left( {\vec{x}} \right) = - x_{2} + 0.00954x_{3} \le 0\),

\(g_{3} \left( {\vec{x}} \right) = - \pi x_{3}^{2} x_{4} - \frac{4}{3}\pi x_{3}^{3} + 1,296,000 \le 0,\;g_{4} \left( {\vec{x}} \right) = x_{4} - 240 \le 0\),

$${\text{where}}\;0 \le x_{i} \le 100{\text{ for }}i = 1,{ }2\;{\text{and}}\;10 \le x_{i} \le 200{\text{ for }}i = 3,{ }4$$
(24)
Fig. 7
figure 7

Pressure vessel design

3.2 C.2. Three-Bar Truss Problem

This issue's purpose is to manufacture a truss with the least amount of weight while still adhering to three limitations. Regarding Fig. C.2, two design variables, x1 and x2, should be chosen while taking into account limits on stress, deflection, and buckling. Equation (25) is the mathematical representation of this problem.

$${\text{Consider}}\;\vec{x} = \left[ {x_{1} x_{2} } \right] = \left[ {A_{1} { }A_{2} } \right]$$
$${\text{Minimize}}\;f\left( {\vec{x}} \right) = \left( {2\sqrt 2 x_{1} + x_{2} } \right) \times l$$
$${\text{Subject to}}\;g_{1} \left( {\vec{x}} \right) = \frac{{\sqrt 2 x_{1} + x_{2} }}{{\sqrt 2 x_{1}^{2} + 2x_{1} x_{2} }}{\text{P}} - {\upsigma } \le 0,g_{2} \left( {\vec{x}} \right) = \frac{{x_{2} }}{{\sqrt 2 x_{1}^{2} + 2x_{1} x_{2} }}{\text{P}} - {\upsigma } \le 0,$$
$$g_{3} \left( {\vec{x}} \right) = \frac{1}{{\sqrt 2 x_{2} + x_{1} }}{\text{P}} - {\upsigma } \le 0$$
$${\text{where}}\;0 \le x_{1} ,{ }x_{2} \le 1,\;l = 100\;{\text{cm}},{ }P = 2\;{\text{kN}}/{\text{cm}}^{2} ,\;\sigma = 2\;{\text{kN}}/{\text{cm}}^{2}$$
(25)
Fig. 8
figure 8

Three-bar truss design

3.3 C.3. Welded Beam Problem

Determining the minimum cost to fabricate a welded beam is the subject of this design problem. It has four design factors that need to be optimized as shown in Fig. C.10 and four restrictions that should be considered. Equation (26) is the mathematical representation of this problem.

$${\text{Consider}}\;\vec{x} = \left[ {x_{1} x_{2} x_{3} x_{4} } \right] = \left[ {h{ }l{ }t{ }b} \right]$$
$${\text{Minimize}}\;f\left( {\vec{x}} \right) = 1.10471x_{1}^{2} x_{2} + 0.04811x_{3} x_{4} \times \left( {14.0 + x_{2} } \right)$$

\({\text{Subject to}}\;g_{1} \left( {\vec{x}} \right) = {\uptau }\left( {\vec{x}} \right) - \tau_{max} \le 0,g_{2} \left( {\vec{x}} \right) = {\upsigma }\left( {\vec{x}} \right) - \sigma_{max} \le 0,g_{3} \left( {\vec{x}} \right) = {\updelta }\left( {\vec{x}} \right) - \delta_{max} \le 0\),

$$g_{4} \left( {\vec{x}} \right) = x_{1} - x_{4} \le 0,g_{5} \left( {\vec{x}} \right) = {\text{P}} - P_{{\text{c}}} \left( {\vec{x}} \right) \le 0,g_{6} \left( {\vec{x}} \right) = 0.125 - x_{1} \le 0$$

\(g_{7} \left( {\vec{x}} \right) = 1.10471x_{1}^{2} + 0.04811x_{3} x_{4} \times \left( {14.0 + x_{2} } \right) - 0.5 \le 0\)

$${\text{where}}\;0.1 \le x_{i} \le 2{\text{ for }}i = 1,{ }2\;{\text{and}}\;0.1 \le x_{i} \le 10{\text{ for }}i = 3,{ }4$$
(26)
Fig. 9
figure 9

Welded beam design

3.4 C.4. Tension/compression Spring Design Problem

The major goal of this design problem is to reduce the weight of the tension/compression spring. This problem has three design factors, as shown in Fig. C.11. Equation (27) is the mathematical representation of this problem.

$${\text{Consider}}\;\vec{x} = \left[ {x_{1} x_{2} x_{3} } \right] = \left[ {d{ }D{ }N} \right]$$
$${\text{Minimize }}f\left( {\vec{x}} \right) = \left( {x_{3} + 2} \right)x_{2} x_{1}^{2}$$
$${\text{Subject to }}g_{1} \left( {\vec{x}} \right) = 1 - \frac{{x_{2}^{3} x_{3} }}{{71785x_{1}^{2} }} \le 0,g_{2} \left( {\vec{x}} \right) = \frac{{4x_{2}^{2} - x_{1} x_{2} }}{{12566\left( {x_{2} x_{1}^{3} - x_{1}^{4} } \right)}} + \frac{1}{{5108x_{1}^{2} }} \le 0$$

\(g_{3} \left( {\vec{x}} \right) = 1 - \frac{{140.45x_{1} }}{{x_{2}^{2} x_{3} }} \le 0,g_{4} \left( {\vec{x}} \right) = \frac{{x_{1 + } x_{2} }}{1.5} - 1 \le 0\)

$${\text{where }}0.05 \le x_{1} \le 2.00,0.25 \le x_{2} \le 1.30,2.00 \le x_{3} \le 15.0$$
(27)
Fig. 10
figure 10

Tension/compression spring design

3.5 C.5. Speed Reducer Design Problem

Taking into consideration the bending stress of the gear teeth, the surface stress, the transverse deflections, and the stresses in the shafts, the goal of this restricted optimization issue is to minimize the weight of the speed reducer. This problem has seven variables, as shown in Fig. C.3. The mathematical representation of this problem shown in Eq. (28).

Consider

$${\text{Minimize}}\;\;f\left( {\vec{x}} \right) = 0.7854x_{1} x_{2}^{2} \left( {3.3333x_{3}^{2} + 14.9334x_{3} - 43.0934} \right) - 1.508x_{1} \left( {x_{6}^{2} + x_{7}^{2} } \right) + 7.4777\left( {x_{6}^{3} + x_{7}^{3} } \right) + 0.7854\left( {x_{4} x_{6}^{2} + x_{5} x_{7}^{2} } \right)$$

\(\begin{aligned} {\text{Subject to}}\; & \;g_{1} \left( {\vec{x}} \right) = \frac{27}{{x_{1} x_{2}^{2} x_{3} }} - 1 \le 0,\;\;g_{2} \left( {\vec{x}} \right) = \frac{397.5}{{x_{1} x_{2}^{2} x_{3}^{2} }} - 1 \le 0. \\ & g_{3} \left( {\vec{x}} \right) = \frac{{1.93x_{4}^{3} }}{{x_{2} x_{6}^{4} x_{3} }} - 1 \le 0 \\ \end{aligned}\),

\(g_{4} \left( {\vec{x}} \right) = \frac{{1.93x_{5}^{3} }}{{x_{2} x_{7}^{4} x_{3} }} - 1 \le 0,g_{5} \left( {\vec{x}} \right) = \frac{{\left[ {\left( {745\left( {x_{4} /x_{2} x_{3} } \right)} \right)^{2} + 16.9 \times 10^{6} } \right]^{1/2} }}{{110x_{6}^{3} }} - 1 \le 0\),

$$g_{6} \left( {\vec{x}} \right) = \frac{{\left[ {\left( {745\left( {x_{5} /x_{2} x_{3} } \right)} \right)^{2} + 157.5 \times 10^{6} } \right]^{1/2} }}{{85x_{7}^{3} }} - 1 \le 0$$

\(g_{7} \left( {\vec{x}} \right) = \frac{{x_{2} x_{3} }}{40} - 1 \le 0,g_{8} \left( {\vec{x}} \right) = \frac{{5x_{2} }}{{x_{1} }} - 1 \le 0,g_{9} \left( {\vec{x}} \right) = \frac{{x_{1} }}{{12x_{2} }} - 1 \le 0\)

\(g_{10} \left( {\vec{x}} \right) = \frac{{1.5x_{6} + 1.9}}{{x_{4} }} - 1 \le 0,g_{11} \left( {\vec{x}} \right) = \frac{{1.1x_{7} + 1.9}}{{x_{5} }} - 1 \le 0\),

$${\text{where}}\;\;2.6 \le x_{1} \le 3.6,{ }0.7 \le x_{2} \le 0.8,{ }17 \le x_{3} \le 28,{ }7.3 \le x_{4} \le 8.3,$$
$$7.3 \le x_{5} \le 8.3,{ }2.9 \le x_{6} \le 3.9,{ }5.0 \le x_{7} \le 5.5$$
(28)
Fig. 11
figure 11

Speed reducer design

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadimi-Shahraki, M.H., Farhanginasab, H., Taghian, S. et al. Multi-trial Vector-based Whale Optimization Algorithm. J Bionic Eng 21, 1465–1495 (2024). https://doi.org/10.1007/s42235-024-00493-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-024-00493-8

Keywords

Navigation