Skip to main content
Log in

Design of a Bio-inspired, Two-winged, Flapping-wing Micro Air Vehicle with High-lift Performance

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In this paper, we present the development of our latest flapping-wing micro air vehicle (FW-MAV), named Explobird, which features two wings with a wingspan of 195 mm and weighs a mere 25.2 g, enabling it to accomplish vertical take-off and hover flight. We devised a novel gear-based mechanism for the flapping system to achieve high lift capability and reliability and conducted extensive testing and analysis on the wings to optimise power matching and lift performance. The Explobird can deliver a peak lift-to-weight ratio of 1.472 and an endurance time of 259 s during hover flight powered by a single-cell LiPo battery. Considering the inherent instability of the prototype, we discuss the derivatives of its longitudinal system, underscoring the importance of feedback control, position of the centre of gravity, and increased damping. To demonstrate the effect of damping enhancement on stability, we also designed a passive stable FW-MAV. Currently, the vehicle is actively stabilised in roll by adjusting the wing root bars and in pitch through high-authority tail control, whereas yaw is passively stabilised. Through a series of flight tests, we successfully demonstrate that our prototype can perform vertical take-off and hover flight under wireless conditions. These promising results position the Explobird as a robust vehicle with high lift capability, paving the way towards the use of FW-MAVs for carrying load equipment in multiple tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Muijres, F. T., Elzinga, M. J., Melis, J. M., & Dickinson, M. H. (2014). Flies evade looming targets by executing rapid visually directed banked turns. Science, 344, 172–177. https://doi.org/10.1126/science.1248955

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Floreano, D., & Wood, R. (2015). Science, technology and the future of small autonomous drones. Nature, 521, 460–466. https://doi.org/10.1038/nature14542

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Fry, S. N., Sayaman, R., & Dickinson, M. H. (2003). The aerodynamics of free-flight maneuvers in drosophila. Science, 300, 495–498. https://doi.org/10.1126/science.1081944

    Article  ADS  PubMed  Google Scholar 

  4. Wang, Z. J. (2005). Dissecting insect flight. Annual Review of Fluid Mechanics, 37, 183–210. https://doi.org/10.1146/annurev.fluid.36.050802.121940

    Article  ADS  MathSciNet  Google Scholar 

  5. Tobalske, B. W. (2007). Biomechanics of bird flight. The Journal of Experimental Biology, 210, 3135–3146. https://doi.org/10.1242/jeb.000273

    Article  PubMed  Google Scholar 

  6. Song, J. L., Luo, H. X., Tobalske, B. W., & Hedrick, T. (2016). Three-dimensional numerical simulation of hummingbird forward flight. 46th AIAA Fluid Dynamics Conference, Washington, D.C. https://doi.org/10.2514/6.2016-3253

    Book  Google Scholar 

  7. Keennon, M., Klingebiel, K., & Won, H. (2012). Development of the nano hummingbird: A tailless flapping wing micro air vehicle. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, USA, 2012, pp. 1–24. https://doi.org/10.2514/6.2012-588

  8. Wood, R. J. (2008). The first takeoff of a biologically inspired at-scale robotic insect. IEEE Transactions on Robotics, 24(2), 341–347. https://doi.org/10.1109/TRO.2008.916997

    Article  Google Scholar 

  9. Ma, K. Y., Chirarattananon, P., Fuller, S. B., & Wood, R. J. (2013). Controlled flight of a biologically inspired, insect-scale robot. Science, 340(6132), 603–607. https://doi.org/10.1126/science.1231806

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Jafferis, N. T., Helbling, E. F., Karpelson, M., & Wood, R. J. (2019). Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature, 570, 491–495. https://doi.org/10.1038/s41586-019-1322-0

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Phan, H. V., Kang, T., & Park, H. C. (2017). Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control. Bioinspiration & Biomimetics, 12(3), 036006. https://doi.org/10.1088/1748-3190/aa65db

    Article  ADS  Google Scholar 

  12. Phan, H. V., Aurecianus, S., Kang, T., & Park, H. C. (2019). KUBeetle-S: An insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism. International Journal of Micro Air Vehicles, 11, 1756829319861371. https://doi.org/10.1177/1756829319861371

    Article  Google Scholar 

  13. Phan, H. V., Aurecianus, S., Au, T. K. L., Kang, T., & Park, H. C. (2020). Towards the long-endurance flight of an insect-inspired, tailless, two-winged, flapping-wing flying robot. IEEE Robotics and Automation Letters, 5(4), 5059–5066. https://doi.org/10.1109/LRA.2020.3005127

    Article  Google Scholar 

  14. Roshanbin, A., Altartouri, H., Karásek, M., & Preumont, A. (2017). COLIBRI: A hovering flapping twin-wing robot. International Journal of Micro Air Vehicles, 9, 270–282. https://doi.org/10.1177/1756829317695563

    Article  Google Scholar 

  15. Preumont, A., Wang, H., Kang, S., Wang, K., & Roshanbin, A. (2021). A note on the electro-mechanical design of a robotic hummingbird. Actuators, 10(3), 52. https://doi.org/10.3390/act10030052

    Article  Google Scholar 

  16. Tu, Z., Fei, F., & Deng, X. Y. (2020). Untethered flight of an at-scale dual-motor hummingbird robot with bio-inspired decoupled wings. IEEE Robotics and Automation Letters, 5, 4194–4201. https://doi.org/10.1109/LRA.2020.2974717

    Article  Google Scholar 

  17. Nagai, H., Nakamura, K., Fujita, K., Tanaka, I., Nagasaki, S., Kinjo, Y., Kuwazono, S., & Murozono, M. (2021). Development of tailless two-winged flapping drone with gravity center position control. Sensors and Materials, 33(3), 859–872. https://doi.org/10.18494/SAM.2021.3222

    Article  CAS  Google Scholar 

  18. Coleman, D. A., Benedict, M., Hirishikeshaven, V., & Chopra, I. (2017). Development of a robotic hummingbird capable of controlled hover. Journal of the American Helicopter Society, 62(3), 1–9.

    Article  Google Scholar 

  19. Nan, Y., Karásek, M., Lalami, M. E., & Preumont, A. (2017). Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle. Bioinspiration & Biomimetics, 12(2), 026010. https://doi.org/10.1088/1748-3190/aa5c9e

    Article  ADS  Google Scholar 

  20. Liu, C., Li, P. P., Song, F., & Sun, J. Y. (2021). Wing shape optimization design inspired by beetle hindwings in wind tunnel experiments. Computers in Biology and Medicine, 135, 104642. https://doi.org/10.1016/j.compbiomed.2021.104642

    Article  PubMed  Google Scholar 

  21. Karasek, M., Muijres, F. T., De Wagter, C., Remes, B. D. W., & De Croon, G. C. H. E. (2018). A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science, 361, 1089–1094. https://doi.org/10.1126/science.aat0350

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  22. Yan, Y. W., Song, F., Xu, N., Zhu, H. C., Xing, H. X., Zhang, S. J., & Sun, J. Y. (2023). Study on the vibration reduction characteristics of FWMAV flexible bionic wings mimicking the hindwings of Trypoxylus dichotomus. Journal of Bionic Engineering, 20, 2179–2193.

    Article  Google Scholar 

  23. Nguyen, Q. V., Chan, W., & Debiasi, M. (2016). Hybrid design and performance tests of a hovering insect-inspired flapping-wing micro aerial vehicle. Journal of Bionic Engineering, 13, 235–248. https://doi.org/10.1016/S1672-6529(16)60297-4

    Article  Google Scholar 

  24. Truong, N. T., Phan, H. V., & Park, H. C. (2019). Design and demonstration of a bio-inspired flapping-wing-assisted jumping robot. Bioinspiration & Biomimetics, 14(3), 036010. https://doi.org/10.1088/1748-3190/aafff5

    Article  ADS  CAS  Google Scholar 

  25. Leys, F. (2017). The Eurotrochilus Mechanicus: a robotic hummingbird driven by a resonant flapping mechanism. PhD Dissertation, KU Leuven, Belgium.

  26. Nabawy, M. R. A., & Marcinkeviciute, R. (2021). Scalability of resonant motor-driven flapping wing propulsion systems. Royal Society Open Science, 8, 210452. https://doi.org/10.1098/rsos.210452

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Hu, K., Deng, H. C., Xiao, S. J., Sun, Y. H. & Zhang, S. T. (2022). Bionic design and optimization of a hoverable flapping-wing micro air vehicle with gravity center position control. 2021 International Conference on Mechanical Design, Changsha, China, 2021. pp. 1879–1890.

  28. Deng, H. C., Xiao, S. J., Huang, B. X., Yang, L. L., Xiang, X. Y., & Ding, X. L. (2020). Design optimization and experimental study of a novel mechanism for a hover-able bionic flapping-wing micro air vehicle. Bioinspiration & Biomimetics, 16, 026005. https://doi.org/10.1088/1748-3190/abc292

    Article  Google Scholar 

  29. Anderson, J. D. (2017). Fundamentals of Aerodynamics, 6th Edition. McGraw-Hill Education, New York, USA.

    Google Scholar 

  30. Wang, L., Jiang, W. Y., Wu, Z. Y., Zhao, L. F., & Jiao, Z. X. (2023). Modeling the bio-inspired wing-tail interaction mechanism and applying it in flapping wing aircraft pitch control. IEEE Robotics and Automation Letters, 8(5), 2914–2921. https://doi.org/10.1109/LRA.2023.3262178

    Article  Google Scholar 

  31. Fernandez, M. J. (2010). Flight performance and comparative energetics of the giant Andean hummingbird. PhD Dissertation, University of California, Berkeley.

  32. Ellington, C. P. (1999). The novel aerodynamics of insect flight: Applications to micro-air vehicles. Journal of Experimental Biology, 202(23), 3439–3448. https://doi.org/10.1242/jeb.202.23.3439

    Article  CAS  PubMed  Google Scholar 

  33. Chin, Y. W., Kok, J. M., Zhu, Y. Q., Chan, W. L., Chahl, J. S., Khoo, B. C., & Lau, G. K. (2020). Efficient flapping wing drone arrests high-speed flight using post-stall soaring. Science Robotics, 5(44), 2386. https://doi.org/10.1126/scirobotics.aba2386

    Article  Google Scholar 

  34. Van Breugel, F., Regan, W., & Lipson, H. (2008). From insects to machines. IEEE Robotics & Automation Magazine, 15(4), 68–74. https://doi.org/10.1109/MRA.2008.929923

    Article  Google Scholar 

  35. Chen, Z., Zhang, W., Mou, J., & Zhao, J. (2022). Development of an insect-like flapping-wing micro air vehicle with parallel control mechanism. Applied Sciences, 12(7), 3509. https://doi.org/10.3390/app12073509

    Article  CAS  Google Scholar 

  36. Taylor, G. K., & Thomas, A. (2002). Animal flight dynamics II. Longitudinal stability in flapping flight. Journal of Theoretical Biology, 214(3), 351–370.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Karásek, M., & Preumont, A. (2012). Flapping flight stability in hover: A comparison of various aerodynamic models. International Journal of Micro Air Vehicles, 4(3), 203–226. https://doi.org/10.1260/1756-8293.4.3.203

    Article  Google Scholar 

  38. Padfield, G. D. (1999). Helicopter flight dynamics: The theory and application of flying qualities and simulation modeling. Journal of Guidance, Control, and Dynamics, 22(2), 383–384.

    Article  Google Scholar 

  39. Dickinson, M. H., Lehmann, F. O., & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422), 1954–1960. https://doi.org/10.1126/science.284.5422.1954

    Article  CAS  PubMed  Google Scholar 

  40. Truong, Q. T., Nguyen, Q. V., Truong, V. T., Park, H. C., Byun, D. Y., & Goo, N. S. (2011). A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system. Bioinspiration & Biomimetics, 6(3), 036008.

    Article  ADS  CAS  Google Scholar 

  41. Lee, Y. J., Lua, K. B., Lim, T. T., & Yeo, K. S. (2016). A quasi-steady aerodynamic model for flapping flight with improved adaptability. Bioinspiration & Biomimetics, 11(3), 036005. https://doi.org/10.1088/1748-3190/11/3/036005

    Article  ADS  CAS  Google Scholar 

  42. Sane, S. P., & Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. Journal of Experimental Biology, 205(8), 1087–1096. https://doi.org/10.1242/jeb.205.8.1087

    Article  PubMed  Google Scholar 

  43. Roshanbin, A., Garone, E., & Preumont, A. (2019). Precision stationary flight of a robotic hummingbird, 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada. pp.7741–7747. doi: https://doi.org/10.1109/ICRA.2019.8793841.

  44. Nguyen, K. Q., Au, L. T., Phan, H. V., & Park, H. C. (2021). Comparative dynamic flight stability of insect-inspired flapping-wing micro air vehicles in hover: Longitudinal and lateral motions. Aerospace Science and Technology, 119, 107085. https://doi.org/10.1016/j.ast.2021.107085

    Article  Google Scholar 

  45. Karasek, M (2014). Robotic hummingbird: Design of a control mechanism for a hovering flapping wing micro air vehicle. PhD Dissertation, ULB, Belgium.

  46. Teoh, Z. E., Fuller, S. B., Chirarattananon, P., Préz-Arancibia, N. O., Greenberg, J. D., & Wood, R. J. (2012). A hovering flapping-wing microrobot with altitude control and passive upright stability. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 2012, pp.3209–3216. doi: https://doi.org/10.1109/IROS.2012.6386151.

  47. Altartouri, H., Roshanbin, A., Andreolli, G., Fazzi, L., Karásek, M., Lalami, M., & Preumont, A. (2019). Passive stability enhancement with sails of a hovering flapping twin-wing robot. International Journal of Micro Air Vehicles, 11, 1756829319841817. https://doi.org/10.1177/175682931984181

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China under Grant No. 51975023 & 52322501. This work was supported in part by the National Natural Science Foundation of China under Grant No. U22B2040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huichao Deng.

Ethics declarations

Conflict of Interest

The authors declare no potential conflicts of interest regarding the research, authorship, and/or publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 70293 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Deng, H., Xiao, S. et al. Design of a Bio-inspired, Two-winged, Flapping-wing Micro Air Vehicle with High-lift Performance. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00486-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00486-7

Keywords

Navigation