Skip to main content
Log in

High Performance Soft Electrochemical Actuators Based on Hierarchical Conductive Polymer Ionogels

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Electrochemical actuators based on conductive polymers are emerging as a strong competitive in the field of soft actuators because of their intrinsically conformable/elastic nature, low cost, low operating voltage and air-working ability. Recent development has shown that adding electroactive materials, such as CNT and graphene, can improve their actuation performance. Despite the complex material systems used, their output strains (one of the key factors) are generally lower than 1%, which limited further applications of them in multiple scenarios. Here, we report soft electrochemical actuators based on conductive polymer ionogels by embedding polyaniline particles between the PEDOT:PSS nanosheets. Results show that such a hierarchical structure not only leads to a high conductivity (1250 S/cm) but also improved electrochemical activities. At a low operating voltage of 1 V, the maximum strain of these soft actuators reaches an exceptional value of 1.5%, with a high blocking force of 1.3 mN. Using these high-performance electrochemical actuators, we demonstrate soft grippers for manipulating object and a bionic flower stimulated by an electrical signal. This work sets an important step towards enabling the enhanced performance of electrochemical actuators based on conductive polymers with designed microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Majidi, C. (2014). Soft robotics: A perspective-current trends and prospects for the future. Soft Robotics, 1, 5–11. https://doi.org/10.1089/soro.2013.0001

    Article  Google Scholar 

  2. Lee, C., Kim, M., Kim, Y. J., Hong, N., Ryu, S., Kim, H. J., & Kim, S. (2017). Soft robot review. International Journal of Control Automation and Systems, 15, 3–15. https://doi.org/10.1007/s12555-016-0462-3

    Article  Google Scholar 

  3. Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A., & Sitti, M. (2022). Soft actuators for real-world applications. Nature Reviews Materials, 7, 235–249. https://doi.org/10.1038/s41578-021-00389-7

    Article  Google Scholar 

  4. Miriyev, A., Stack, K., & Lipson, H. (2017). Soft material for soft actuators. Nature Communications, 8, 596. https://doi.org/10.1038/s41467-017-00685-3

    Article  Google Scholar 

  5. Kim, J., Kim, J. W., Kim, H. C., Zhai, L. D., Ko, H. U., & Muthoka, R. M. (2019). Review of soft actuator materials. International Journal of Precision Engineering and Manufacturing, 20, 2221–2241. https://doi.org/10.1007/s12541-019-00255-1

    Article  Google Scholar 

  6. Namdar Ghalati, M. H., Akbari, S., Ghafarirad, H., & Zareinejad, M. (2023). Behavior analysis of biomimetic soft bending actuators in free motion and contact. Journal of Bionic Engineering, 20, 967–981. https://doi.org/10.1007/s42235-022-00322-w

    Article  Google Scholar 

  7. Mirfakhrai, T., Madden, J. D. W., & Baughman, R. H. (2007). Polymer artificial muscles. Materials Today, 10, 30–38. https://doi.org/10.1016/S1369-7021(07)70048-2

    Article  Google Scholar 

  8. Baughman, R. H. (1996). Conducting polymer artificial muscles. Synthetic Metals, 78, 339–353. https://doi.org/10.1016/0379-6779(96)80158-5

    Article  Google Scholar 

  9. Mirvakili, S. M., & Hunter, I. W. (2018). Artificial muscles: Mechanisms, applications, and challenges. Advanced Materials, 30, 1704407. https://doi.org/10.1002/adma.201704407

    Article  Google Scholar 

  10. Wang, J. X., Gao, D. C., & Lee, P. S. (2021). Recent progress in artificial muscles for interactive soft robotics. Advanced Materials, 33, 2003088. https://doi.org/10.1002/adma.202003088

    Article  Google Scholar 

  11. Kim, O., Kim, S. J., & Park, M. J. (2018). Low-voltage-driven soft actuators. Chemical Communications, 54, 4895–4904. https://doi.org/10.1039/c8cc01670d

    Article  Google Scholar 

  12. He, Q. S., Yin, G. X., Vokoun, D., Shen, Q., Lu, J., Liu, X. F., Xu, X. R., Yu, M., & Dai, Z. D. (2022). Review on improvement, modeling, and application of ionic polymer metal composite artificial muscle. Journal of Bionic Engineering, 19, 279–298. https://doi.org/10.1007/s42235-022-00153-9

    Article  Google Scholar 

  13. Baughman, R. H., Shacklette, L. W., Elsenbaumer, R. L., Plichta, E., Becht, C. Conducting polymer electromechanical actuators. In: Brédas, J. L., Chance, R. R. Conjugated polymeric materials: Opportunities in electronics, optoelectronics, and molecular electronics. Springer Netherlands, pp 559–582 (1990).

  14. Park, J. M., Kim, S. J., Jang, J. H., Wang, Z. J., Kim, P. G., Yoon, D. J., Kim, J., Hansen, G., & Devries, K. L. (2008). Actuation of electrochemical, electro-magnetic, and electro-active actuators for carbon nanofiber and ni nanowire reinforced polymer composites. Composites Part B-Engineering, 39, 1161–1169. https://doi.org/10.1016/j.compositesb.2008.03.009

    Article  Google Scholar 

  15. Malinauskas, A., Malinauskiene, J., & Ramanavicius, A. (2005). Conducting polymer-based nanostructurized materials: Electrochemical aspects. Nanotechnology, 16, R51–R62. https://doi.org/10.1088/0957-4484/16/10/R01

    Article  Google Scholar 

  16. Zhang, X., Wang, T. F., Li, S. J., & Shen, X. J. (2021). Electrodeposition polyaniline nanofiber on the PEDOT:PSS-coated sinws for high performance supercapacitors. Journal of Inorganic and Organometallic Polymers and Materials, 31, 4260–4271. https://doi.org/10.1007/s10904-021-02036-8

    Article  Google Scholar 

  17. Hu, F. Q., Xue, Y., Xu, J. K., & Lu, B. Y. (2019). PEDOT-based conducting polymer actuators. Front Robot AI, 6, 114. https://doi.org/10.3389/frobt.2019.00114

    Article  Google Scholar 

  18. Park, J., Lee, A., Yim, Y., & Han, E. (2011). Electrical and thermal properties of PEDOT:PSS films doped with carbon nanotubes. Synthetic Metals, 161, 523–527. https://doi.org/10.1016/j.synthmet.2011.01.006

    Article  Google Scholar 

  19. Terasawa, N., & Asaka, K. (2016). High-performance PEDOT:PSS/single-walled carbon nanotube/ionic liquid actuators combining electrostatic double-layer and faradaic capacitors. Langmuir, 32, 7210–7218. https://doi.org/10.1021/acs.langmuir.6b01148

    Article  Google Scholar 

  20. Wang, D. X., Lu, C., Zhao, J. J., Han, S., Wu, M. H., & Chen, W. (2017). High energy conversion efficiency conducting polymer actuators based on PEDOT:PSS/mwcnts composite electrode. RSC Advances, 7, 31264–31271. https://doi.org/10.1039/c7ra05469f

    Article  Google Scholar 

  21. Jia, G. W., Zheng, A., Wang, X., Zhang, L., Li, L., Li, C. X., Zhang, Y., & Cao, L. Y. (2021). Flexible, biocompatible and highly conductive mxene-graphene oxide film for smart actuator and humidity sensor. Sensors and Actuators B: Chemical, 346, 130507. https://doi.org/10.1016/j.snb.2021.130507

    Article  Google Scholar 

  22. Sachyani, E., Layani, M., Tibi, G., Avidan, T., Degani, A., & Magdassi, S. (2017). Enhanced movement of cnt-based actuators by a three-layered structure with controlled resistivity. Sensors and Actuators B: Chemical, 252, 1071–1077. https://doi.org/10.1016/j.snb.2017.06.104

    Article  Google Scholar 

  23. Yano, H., Kudo, K., Marumo, K., & Okuzaki, H. (2019). Fully soluble self-doped poly(3,4-ethylenedioxythiophene) with an electrical conductivity greater than 1000 s cm1. Science Advances, 5, eaav9492. https://doi.org/10.1126/sciadv.aav9492

    Article  Google Scholar 

  24. Guo, D. J., Wang, L., Wang, X. J., Xiao, Y. A., Wang, C. D., Chen, L. M., & Ding, Y. H. (2020). PEDOT coating enhanced electromechanical performances and prolonged stable working time of ipmc actuator. Sensors and Actuators B: Chemical, 305, 127488. https://doi.org/10.1016/j.snb.2019.127488

    Article  Google Scholar 

  25. Wang, Y., Zhu, C. X., Pfattner, R., Yan, H. P., Jin, L. H., Chen, S. C., Molina-Lopez, F., Lissel, F., Liu, J., Rabiah, N. I., Chen, Z., Chung, J. W., Linder, C., Toney, M. F., Murmann, B., & Bao, Z. (2017). A highly stretchable, transparent, and conductive polymer. Science Advances, 3, e1602076. https://doi.org/10.1126/sciadv.1602076

    Article  Google Scholar 

  26. Pal, R., Goyal, S. L., Rawal, I., Gupta, A. K., & Ruchi. (2021). Efficient energy storage performance of electrochemical supercapacitors based on polyaniline/graphene nanocomposite electrodes. Journal of Physics and Chemistry of Solids, 154, 110057. https://doi.org/10.1016/j.jpcs.2021.110057

    Article  Google Scholar 

  27. Yemata, T. A., Zheng, Y., Kyaw, A. K. K., Wang, X. Z., Song, J., Chin, W. S., & Xu, J. W. (2020). Binary treatment of PDEDOT:PSS films with nitric acid and imidazolium-based ionic liquids to improve the thermoelectric properties. Materials Advances, 1, 3233–3242. https://doi.org/10.1039/d0ma00522c

    Article  Google Scholar 

  28. Petroffe, G., Beouch, L., Cantin, S., Aubert, P. H., Plesse, C., Dudon, J. P., Vidal, F., & Chevrot, C. (2018). Investigations of ionic liquids on the infrared electroreflective properties of poly(3,4-ethylenedioxythiophene). Solar Energy Materials and Solar Cells, 177, 23–31. https://doi.org/10.1016/J.SOLMAT.2017.07.018

    Article  Google Scholar 

  29. Umrao, S., Tabassian, R., Kim, J., Nguyen, V., Zhou, Q. T., Nam, S., & Oh, I. K. (2019). Mxene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Science Robotics, 4, eaaw7797. https://doi.org/10.1126/scirobotics.aaw7797

    Article  Google Scholar 

  30. Lu, W., Fadeev, A. G., Qi, B., Smela, E., Mattes, B. R., Ding, J., Spinks, G. M., Mazurkiewicz, J., Zhou, D., Wallace, G. G., Macfarlane, D. R., Forsyth, S. A., & Forsyth, M. (2002). Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science, 297, 983–987. https://doi.org/10.1126/science.1072651

    Article  Google Scholar 

  31. Lu, W., Norris, I. D., & Mattes, B. R. (2005). Electrochemical actuator devices based on polyaniline yarns and ionic liquid electrolytes. Australian Journal of Chemistry, 58, 263–269. https://doi.org/10.1071/ch04255

    Article  Google Scholar 

  32. Li, Y. C., Tanigawa, R., & Okuzaki, H. (2014). Soft and flexible PEDOT/PSS films for applications to soft actuators. Smart Materials and Structures, 23, 074010. https://doi.org/10.1088/0964-1726/23/7/074010

    Article  Google Scholar 

  33. Okuzaki, H., Takagi, S., Hishiki, F., & Tanigawa, R. (2014). Ionic liquid/polyurethane/PEDOT:PSS composites for electro-active polymer actuators. Sensors and Actuators B-Chemical, 194, 59–63. https://doi.org/10.1016/J.SNB.2013.12.059

    Article  Google Scholar 

  34. Terasawa, N., & Asaka, K. (2018). Self-standing cellulose nanofiber/poly(3,4-ethylenedioxythiophene):Poly(4-styrenesulfonate)/ionic liquid actuators with superior performance. RSC Advances, 8, 33149–33155. https://doi.org/10.1039/c8ra06981f

    Article  Google Scholar 

  35. Terasawa, N., & Asaka, K. (2018). Performance enhancement of PEDOT: Poly(4-styrenesulfonate) actuators by using ethylene glycol. RSC Advances, 8, 17732–17738. https://doi.org/10.1039/c8ra02714e

    Article  Google Scholar 

  36. Bar-Cohen, Y., Simaite, A., Tondu, B., Mathieu, F., Souéres, P., & Bergaud, C. (2015). Simple casting based fabrication of PEDOT:PSS-PVDF-ionic liquid soft actuators. Electroactive Polymer Actuators and Devices (EAPAD). https://doi.org/10.1117/12.2083936

    Article  Google Scholar 

  37. Rohtlaid, K., Nguyen, G. T. M., Soyer, C., Cattan, E., Vidal, F., & Plesse, C. (2019). Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate)/polyethylene oxide electrodes with improved electrical and electrochemical properties for soft microactuators and microsensors. Advanced Electronic Materials, 5, 1800948. https://doi.org/10.1002/aelm.201800948

    Article  Google Scholar 

  38. Lu, F. Z., Chen, T., Xiang, K., & Wang, Y. N. (2020). Ionic electro-active polymer actuator based on cobalt-containing nitrogen-doped carbon/conducting polymer soft electrode. Polymer Testing, 84, 106413. https://doi.org/10.1016/j.polymertesting.2020.106413

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (2022M711372), Postdoctoral Research Program of Jiangsu Province (2021K544C) and the General Program of Natural Science Foundation for Higher Education in Jiangsu Province (21KJB510004); G. Cheng acknowledges the support from young & middle-aged academic leaders of Jiangsu Blue Project and Jiangsu 333 talent fund; L. Xu acknowledges the support from National Natural Science Foundation of China (NSFC No.51905222) and Natural Science Foundation of Jiangsu Province (Grant No. BK20211068). This work was also supported by International Science and Technology Cooperation Project in Zhenjiang City (Grant No: GJ2020009)

Author information

Authors and Affiliations

Authors

Contributions

HH: Conceptualization, investigation, data curation, formal analysis, writing—original draft. SZ: Methodology, formal analysis. YL: Characterization, data collection. XH: Investigation, data curation, formal analysis. LX: Investigation, data curation, formal analysis. AF: Conceptualization, investigation, project administration, funding acquisition. GC: Supervision, writing—review and editing. JD: Conceptualization, supervision.

Corresponding authors

Correspondence to Aixin Feng, Guanggui Cheng or Jianning Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1875 KB)

Supplementary file2 (MP4 2940 KB)

Supplementary file3 (MP4 1773 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Zhang, S., Li, Y. et al. High Performance Soft Electrochemical Actuators Based on Hierarchical Conductive Polymer Ionogels. J Bionic Eng 20, 2755–2763 (2023). https://doi.org/10.1007/s42235-023-00401-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00401-6

Keywords

Navigation