Skip to main content
Log in

The highly stable air-working electro-active ionic polymer actuator based on nitrogen-doped graphene aerogel flexible electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Three-dimensional nitrogen-doped graphene aerogels (3D N-GAs) were prepared by ultrasonic stripping, hydrothermal reduction and freeze drying. Those N-GAs exhibited high-specific surface area, high nitrogen doping amount, and 3D porous network structure. Soft electro-active ionic polymer actuators were developed for the first time using this 3D N-GA soft electrode. The developed soft actuator exhibited large peak-to-peak displacement of 11.8 mm (3 V and 0.1 Hz) and high air working durability for 93.8% after 6 h cycles. These successful demonstrations elucidated the wide potential of 3D N-GA soft actuators for the next-generation soft robotic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Chen, Q.B. Pei, Electronic muscles and skins: a review of soft sensors and actuators. Chem. Rev. 117, 11239–11268 (2017)

    Article  CAS  Google Scholar 

  2. S. Umrao, R. Tabassian, J.W. Kim, V.H. Nguyen, Q.T. Zhou et al., Mxene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 4, 17797 (2019)

    Article  Google Scholar 

  3. L.R. Kong, W. Chen, Carbon nanotube and graphene-based bioinspired electrochemical actuators. Adv. Mater. 26, 1025–1043 (2014)

    Article  CAS  Google Scholar 

  4. Y. Wang, C. Sun, E. Zhou, J. Su, Deformation mechanisms of electrostrictive graft elastomer. Smart Mater. Struct. 13, 1407 (2004)

    Article  CAS  Google Scholar 

  5. Q.M. Zhang, V. Bharti, X. Zhao, Giant electrostriction relaxorferroelectric behavior electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101–2104 (1998)

    Article  CAS  Google Scholar 

  6. L.J. Romasanta, M.A. Lopez-Manchado, R. Verdejo, Increasing the performance of dielectric elastomer actuators: a review from the materials perspective. Prog. Polym. Sci. 51, 188–211 (2015)

    Article  CAS  Google Scholar 

  7. Y. Osada, H. Okuzaki, H. Hori, A polymer gel with electrically driven motility. Nature 355, 242–244 (1992)

    Article  CAS  Google Scholar 

  8. T.F. Otero, J.G. Martinez, Physical and chemical awareness from sensing polymeric artificial muscles. Experiments and modeling. Prog. Polym. Sci. 44, 62–78 (2015)

    Article  CAS  Google Scholar 

  9. C. Jo, D. Pugal, I.K. Oh, K.J. Kim, K. Asaka, Recent advances in ionic polymer-metal composite actuators and their modeling and applications. Prog. Polym. Sci. 38, 1037–1066 (2013)

    Article  CAS  Google Scholar 

  10. J.C. Dias, D.M. Correia, C.M. Costa, C. Ribeiro, A. Maceiras, J.L. Vilas et al., Improved response of ionic liquid-based bending actuators by tailored interaction with the polar fluorinated polymer matrix. Electrochim. Acta 296, 598–607 (2019)

    Article  CAS  Google Scholar 

  11. A. Punning, K.J. Kim, V. Palmre, F. Vidal, C. Plesse, N. Festin et al., Ionic electroactive polymer artificial muscles in space applications. Sci. Rep. 4, 6913 (2014)

    Article  Google Scholar 

  12. N. Terasawa, K. Asaka, High-performance graphene oxide/vapor-grown carbon fiber composite polymer actuator. Sens. Actuators B 255, 2829–2837 (2018)

    Article  CAS  Google Scholar 

  13. M. Kotal, J. Kim, K.J. Kim, I.K. Oh, Sulfur and nitrogen Co-doped graphene electrodes for high-performance ionic artificial muscles. Adv. Mater. 28, 1610–1615 (2016)

    Article  CAS  Google Scholar 

  14. C. Lu, Y. Yang, J. Wang, R.P. Fu, X.X. Zhao, L. Zhao et al., High-performance graphdiyne-based electrochemical actuators. Nat. Commun. 9, 752 (2018)

    Article  Google Scholar 

  15. Q.S. He, M. Yu, X. Yang, K.J. Kim, Z.D. Dai, An ionic electro-active actuator made with graphene film electrode, chitosan and ionic liquid. Smart Mater. Struct. 24, 065026 (2015)

    Article  Google Scholar 

  16. D.J. Guo, Y.B. Han, J.J. Huang, E.C. Meng, L. Ma, H. Zhang et al., Hydrophilic poly(vinylidene fluoride) film with enhanced inner channels for both water- and ionic liquid-driven ion-exchange polymer metal composite actuators. ACS Appl. Mater. Interfaces 11, 2386–2397 (2019)

    Article  CAS  Google Scholar 

  17. H.S. Wang, J. Cho, D.S. Song, J.H. Jang, J.Y. Jho, J.H. Park, High-performance electroactive polymer actuators based on ultra-thick ionic polymer-metal composites with nanodispersed metal electrodes. ACS Appl. Mater. Interfaces 9, 21998–22005 (2017)

    Article  CAS  Google Scholar 

  18. K. Bian, H. Liu, G. Tai, K.J. Zhu, K. Xiong, Enhanced actuation response of Nafion-based ionic polymer metal composites by doping BaTiO3 nanoparticles. J. Phys. Chem. C 120, 12377–12384 (2016)

    Article  CAS  Google Scholar 

  19. L.F. Chang, H.L. Chen, Z.C. Zhu, B. Li, Manufacturing process and electrode properties of palladium-electroded IPMC. Smart Mater. Struct. 21, 065018 (2012)

    Article  Google Scholar 

  20. G. Wu, X.J. Wu, Y.J. Xu, H.Y. Cheng, J.K. Meng, Q. Yu et al., High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv. Mater. 31, 1806492 (2019)

    Article  Google Scholar 

  21. F.Z. Lu, K. Xiang, Y.N. Wang, T. Chen, Electrochemical actuators based on nitrogen-doped carbons derived from zeolitic imidazolate frameworks. Mater. Design 187, 108405 (2020)

    Article  CAS  Google Scholar 

  22. M. Shahinpoor, K.J. Kim, Ionic polymer-metal composites: I. Fundamentals. Smart Mater. Struct. 10, 819–833 (2001)

    Article  CAS  Google Scholar 

  23. J. Kim, J.H. Jeon, H.J. Kim, H. Lim, I.K. Oh, Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes. ACS Nano 8, 2986–2997 (2014)

    Article  CAS  Google Scholar 

  24. L.H. Lu, J.H. Liu, Y. Hu, Y.W. Zhang, H. Randriamahazaka, W. Chen, Highly stable air working bimorph actuator based on a graphene nanosheet/carbon nanotube hybrid electrode. Adv. Mater. 24, 4317–4321 (2012)

    Article  CAS  Google Scholar 

  25. M. Kotal, J. Kim, R. Tabassian, S. Roy, V.H. Nguyen, N. Koratkar et al., Highly bendable ionic soft actuator based on nitrogen-enriched 3D hetero-nanostructure electrode. Adv. Funct. Mater. 28, 1802464 (2018)

    Article  Google Scholar 

  26. R. Tabassian, J. Kim, V.H. Nguyen, M. Kotal, I.K. Oh, Functionally antagonistic hybrid electrode with hollow tubular graphene mesh and nitrogen-doped crumpled graphene for high-performance ionic soft actuators. Adv. Funct. Mater. 28, 1705714 (2018)

    Article  Google Scholar 

  27. Y.F. Ma, Y.S. Chen, Three-dimensional graphene networks: synthesis, properties and applications. Natl. Sci. Rev. 2, 40–53 (2015)

    Article  CAS  Google Scholar 

  28. M.A. Worsley, P.J. Pauzauskie, T.Y. Olson et al., Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132, 14067–14069 (2010)

    Article  CAS  Google Scholar 

  29. G. Wu, Y. Hu, Y. Liu, J.J. Zhao, X.L. Chen, V. Whoehling et al., Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator. Nat. Commun. 6, 7258 (2015)

    Article  CAS  Google Scholar 

  30. X.J. Yan, X.Y. Wang, Y.Z. Dai, Y.Y. He, Z.B. Cai, Y. Wang et al., In situ self-assembly of SiO2-coating Co3O4/graphene aerogel and its enhanced electrochemical performance for supercapacitors. J. Mater. Sci.: Mater. Electron. 30, 17218–17226 (2019)

    CAS  Google Scholar 

  31. X.Y. Zhu, C. Yang, P.W. Wu, Z.Q. Ma, Y.Y. Shang, G.Z. Bai et al., Precise control of versatile microstructure and properties of graphene aerogel via freezing manipulation. Nanoscale 12, 4882–4894 (2020)

    Article  CAS  Google Scholar 

  32. M.A. Riaz, P. Hadi, I.H. Abidi, A. Tyagi, X.W. Ou, Z.T. Luo, Recyclable 3D graphene aerogel with bimodal pore structure for ultrafast and selective oil sorption from water. RSC Adv. 7, 29722–29731 (2017)

    Article  CAS  Google Scholar 

  33. X. Han, M. Kong, M.J. Li, X.K. Li, W.Q. Yang, C.X. Li, Nacre-based carbon nanomeshes for a soft ionic actuator with large and rapid deformation. J. Mater. Chem. C 8, 1634–1641 (2020)

    Article  CAS  Google Scholar 

  34. L.H. Lu, J.H. Liu, Y. Hu, Y.W. Zhang, W. Chen, Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design. Adv. Mater. 25, 1270–1274 (2013)

    Article  CAS  Google Scholar 

  35. N. Terasawa, K. Asaka, Superior performance of PEDOT:poly(4-styrenesulfonate)/vapor-grown carbon fibre/ionic liquid actuators exhibiting synergistic effects. Sens. Actuators B 248, 273–279 (2017)

    Article  CAS  Google Scholar 

  36. D.M. Correia, J.C. Barbosa, C.M. Costa, P.M. Reis, J.M.S.S. Esperanca, V.D.Z. Bermudez et al., Ionic liquid cation size-dependent electromechanical response of ionic liquid/poly(vinylidene fluoride)-based soft actuators. J. Phys. Chem. C 123, 12744–12752 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the National Natural Science Foundation of China (51603102), and the China Postdoctoral Science Foundation (2018M630554).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, K., Chen, T. & Wang, Y. The highly stable air-working electro-active ionic polymer actuator based on nitrogen-doped graphene aerogel flexible electrode. J Mater Sci: Mater Electron 32, 21395–21405 (2021). https://doi.org/10.1007/s10854-021-06643-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06643-6

Navigation