Skip to main content
Log in

The Effects of a Novel Multicomponent Transition Metal Dichalcogenide on Nervous System Regeneration

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In regenerative medicine, a scaffold is needed to provide physical support for the growth of cells at the injury site. Carbon composites are also widely used in biomedicine. This research aimed to see if (MoWCu)S/rGO could be used in peripheral and central neural regeneration as a carbon-based nanomaterial. This material was created using a one-step hydrothermal process. We used Scanning Electron Microscopy with Energy Dispersive X-ray analysis (SEM–EDX), X-ray diffraction, and Field-Emission Scanning Electron Microscopy (FE-SEM) to describe it. The researchers used animal models of spinal cord injury and sciatic nerve injury to assess its effect as a scaffold of anti-inflammatory and electrical conductivity. The Basso Beattie Bresnahan locomotor rating scale and von Frey Filament were used to assess neuronal function after (MoWCu)S/rGO transplantation. In addition, the expression of p75 NTR and neurotrophic factors (BDNF, NT3, and NGF) mRNA in the experimental rats nerve was compared to the normal ones using Real-Time RT-qPCR. In the experimental groups, the use of (MoWCu)S/rGO resulted in a significant increase in neurotrophic factor gene expression, while p75 NTR was inversely decreased. In conclusion, we found that the nerve regeneration activity of the (MoWCu)S/rGO scaffold in rat models significantly increased motor function recovery in the treated groups. Furthermore, the current study explained the response of this composite to inflammatory neurodegenerative diseases. (MoWCu)S incorporation in graphene is thought to have excellent properties and may be used in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Research data policy and data availability statements

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Boghdadi, A. G., Teo, L., & Bourne, J. A. (2018). The involvement of the myelin-associated inhibitors and their receptors in CNS plasticity and injury. Molecular Neurobiology, 55(3), 1831–1846.

    Article  Google Scholar 

  2. Hassan, A., Nasir, N., & Muzammil, K. (2021). Treatment strategies to promote regeneration in experimental spinal cord injury models. Neurochemical Journal, 15(1), 1–7.

    Article  Google Scholar 

  3. Saeedi, M., Eslamifar, M., Khezri, K., & Dizaj, S. M. (2019). Applications of nanotechnology in drug delivery to the central nervous system. Biomedicine & Pharmacotherapy, 111, 666–675.

    Article  Google Scholar 

  4. Song, P. W., Han, T. Y., Xiang, X., Wang, Y., Fang, H., Niu, Y., & Shen, C. L. (2020). The role of hepatocyte growth factor in mesenchymal stem cell-induced recovery in spinal cord injured rats. Stem Cell Research & Therapy, 11(1), 1–14.

    Article  Google Scholar 

  5. Qiu, B. L., Xie, L., Zeng, J., Liu, T. Y., Yan, M., Zhou, S., Liang, Q., Tang, J., Liang, K., & Kong, B. (2021). Interfacially super-assembled asymmetric and H2O2 sensitive multilayer-sandwich magnetic mesoporous silica nanomotors for detecting and removing heavy metal ions. Advanced Functional Materials, 31(21), 2010694.

    Article  Google Scholar 

  6. Sun, X., Fang, Y., Tang, Z. G., Wang, Z. C., Liu, X. Q., & Liu, H. Q. (2019). Mesoporous silica nanoparticles carried on chitosan microspheres for traumatic bleeding control. International Journal of Biological Macromolecules, 127, 311–319.

    Article  Google Scholar 

  7. Xie, L., Liu, J. R., Bao, X. B., Chen, J. D., Zheng, X. Z., He, Y. J., Wei, Z., Jie, Z., Yong, W., Biao, K., & Kong, B. (2022). Interfacial assembly of nanowire arrays toward carbonaceous mesoporous nanorods and superstructures. Small, 18(2), 2104477.

    Article  Google Scholar 

  8. Lv, H., Xu, D. D., Sun, L. Z., Henzie, J., Lopes, A., Gu, Q. Y., Yamauchi, Y. S., & Liu, B. (2019). Asymmetric multimetallic mesoporous nanospheres. Nano Letters, 19(5), 3379–3385.

    Article  Google Scholar 

  9. Askari, M. B., & Rozati, S. M. (2022). Construction of Co3O4-Ni3S4-rGO ternary hybrid as an efficient nanoelectrocatalyst for methanol and ethanol oxidation in alkaline media. Journal of Alloys and Compounds, 900, 163408.

    Article  Google Scholar 

  10. Salarizadeh, P., Askari, M. B., & Di Bartolomeo, A. (2022). MoS2/Ni3S2/Reduced graphene oxide nanostructure as an electrocatalyst for alcohol fuel cells. ACS Applied Nano Materials, 5, 3361–3373.

    Article  Google Scholar 

  11. Rastgoo-Deylami, M., Javanbakht, M., Omidvar, H., Hooshyari, K., Salarizadeh, P., & Askari, M. B. (2021). Nickel-doped monoclinic WO3 as high performance anode material for rechargeable lithium ion battery. Journal of Electroanalytical Chemistry, 894, 115383.

    Article  Google Scholar 

  12. Salarizadeh, P., & Askari, M. B. (2021). MoS2–ReS2/rGO: A novel ternary hybrid nanostructure as a pseudocapacitive energy storage material. Journal of Alloys and Compounds, 874, 159886.

    Article  Google Scholar 

  13. Askari, M. B., Rozati, S. M., Salarizadeh, P., & Azizi, S. (2022). Reduced graphene oxide supported Co3O4–Ni3S4 ternary nanohybrid for electrochemical energy storage. Ceramics International, 48, 16123–16130.

    Article  Google Scholar 

  14. Askari, N., Beheshti-Marnani, A., Askari, M. B., & Rohani, T. (2019). Detection of ultra-trace levels of insulin by Fe3O4@ MoS2/rGO-GCE as a sensor based on isoelectric points. Journal of Materials Science: Materials in Electronics, 30(10), 9652–9662.

    Google Scholar 

  15. Askari, N., Salarizadeh, N., & Askari, M. B. (2021). Electrochemical determination of rutin by using NiFe2O4 nanoparticles-loaded reduced graphene oxide. Journal of Materials Science: Materials in Electronics, 32(8), 9765–9775.

    Google Scholar 

  16. Xu, M., & Li, N. (2020). Metal-based nanocontainers for drug delivery in tumor therapy. Smart nanocontainers (pp. 195–215). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  17. Askari, N., Askari, M. B., & Shafieipour, A. (2019). Investigation the molecular structure of novel graphene hybrid scaffold in nerve regeneration. Journal of Molecular Structure, 1186, 393–403.

    Article  Google Scholar 

  18. Shah, S., Yin, P. T., Uehara, T. M., Chueng, S. T. D., Yang, L., & Lee, K. B. (2014). Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Advanced Materials, 26(22), 3673–3680.

    Article  Google Scholar 

  19. Jeong, S. J., Cooper, J. G., Ifergan, I., McGuire, T. L., Xu, D., Hunter, Z., Sharma, S., McCarthy, D., Miller, S. D., & Kessler, J. A. (2017). Intravenous immune-modifying nanoparticles as a therapy for spinal cord injury in mice. Neurobiology of Disease, 108, 73–82.

    Article  Google Scholar 

  20. Adusumalli, S., Jamwal, R., Obach, R. S., Ryder, T. F., Leggio, L., & Akhlaghi, F. (2019). Role of molybdenum-containing enzymes in the biotransformation of the novel ghrelin receptor inverse agonist PF-5190457: A reverse translational bed-to-bench approach. Drug Metabolism and Disposition, 47(8), 874–882.

    Article  Google Scholar 

  21. Psomas, G., & Kessissoglou, D. P. (2013). Quinolones and non-steroidal anti-inflammatory drugs interacting with copper (II), nickel (II), cobalt (II) and zinc (II): Structural features, biological evaluation and perspectives. Dalton Transactions, 42(18), 6252–6276.

    Article  Google Scholar 

  22. Nguyen, T. H., Le, H. D., Nguyen Thi Kim, T., Pham The, H., Nguyen, T. M., Cornet, V., Lambert, J., & Kestemont, P. (2020). Anti-inflammatory and antioxidant properties of the ethanol extract of Clerodendrum cyrtophyllum Turcz in copper sulfate-induced inflammation in zebrafish. Antioxidants, 9(3), 192.

    Article  Google Scholar 

  23. Niks, D., & Hille, R. (2019). Molybdenum-and tungsten-containing formate dehydrogenases and formylmethanofuran dehydrogenases: Structure, mechanism, and cofactor insertion. Protein Science, 28(1), 111–122.

    Article  Google Scholar 

  24. Yun, M. K., Wu, Y., Li, Z., Zhao, Y., Waddell, M. B., Ferreira, A. M., Lee, R. E., Bashford, D., & White, S. W. (2012). Catalysis and sulfa drug resistance in dihydropteroate synthase. Science, 335(6072), 1110–1114.

    Article  Google Scholar 

  25. Kozuka, Y., Kawamata, M., Furue, H., Ishida, T., Tanaka, S., Namiki, A., & Yamakage, M. (2016). Changes in synaptic transmission of substantia gelatinosa neurons after spinal cord hemisection revealed by analysis using in vivo patch-clamp recording. Molecular Pain, 12, 1744806916665827.

    Article  Google Scholar 

  26. Wang, J., Cheng, Y., Chen, L., Zhu, T. H., Ye, K. Q., Jia, C., Wang, H. J., Zhu, M. F., Fan, C.Y., & Mo, X. M. (2019). In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomaterialia, 84, 98–113.

    Article  Google Scholar 

  27. Li, R., Li, D. H., Zhang, H. Y., Wang, J., Li, X. K., & Xiao, J. (2020). Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. Acta Pharmacologica Sinica, 41(10), 1289–1300.

    Article  Google Scholar 

  28. Bothwell, M. N. G. F. (2014). Ngf, bdnf, nt3, and nt4. Handbook of Experimental Pharmacology, 220, 3–15.

    Article  Google Scholar 

  29. Askari, M. B., Beheshti-Marnani, A., Banizi, Z. T., & Seifi, M. (2018). Synthesis and evaluation of MoWCoS/G and MoWCuS/G as new transition metal dichalcogenide nanocatalysts for electrochemical hydrogen evolution reaction. Chemical Physics Letters, 691, 243–249.

    Article  Google Scholar 

  30. Shahriary, L., & Athawale, A. A. (2014). Graphene oxide synthesized by using modified hummers approach. International Journal of Energy and Environmental Engineering, 2(01), 58–63.

    Google Scholar 

  31. Lee, K. H., Chung, M. A., Sohn, J. H., Lee, H. J., & Lee, B. H. (2010). Neuroprotective effects of mexiletine on motor evoked potentials in demyelinated rat spinal cords. Neuroscience Research, 67(1), 59–64.

    Article  Google Scholar 

  32. Hollis, E. R., II., Ishiko, N., Tolentino, K., Doherty, E., Rodriguez, M. J., Calcutt, N. A., & Zou, Y. (2015). A novel and robust conditioning lesion induced by ethidium bromide. Experimental Neurology, 265, 30–39.

    Article  Google Scholar 

  33. Song, R. B., Basso, D. M., da Costa, R. C., Fisher, L. C., Mo, X., & Moore, S. A. (2016). Adaptation of the Basso–Beattie–Bresnahan locomotor rating scale for use in a clinical model of spinal cord injury in dogs. Journal of Neuroscience Methods, 268, 117–124.

    Article  Google Scholar 

  34. Sas, A. R., Carbajal, K. S., Jerome, A. D., Menon, R., Yoon, C., Kalinski, A. L., Giger, R. J., & Segal, B. M. (2020). A new neutrophil subset promotes CNS neuron survival and axon regeneration. Nature Immunology, 21(12), 1496–1505.

    Article  Google Scholar 

  35. Shang, A. J., Hong, S. Q., Wang, H. Y., Yang, Y., Wang, Z. F., Xu, B. N., Jiang, X. D., & Xu, R. X. (2011). NT-3-secreting human umbilical cord mesenchymal stromal cell transplantation for the treatment of acute spinal cord injury in rats. Brain Research, 1391, 102–113.

    Article  Google Scholar 

  36. Kuh, S. U., Cho, Y. E., Yoon, D. H., Kim, K. N., & Ha, Y. (2005). Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat. Acta Neurochirurgica, 147(9), 985–992.

    Article  Google Scholar 

  37. Sun, W. J., Sun, C. K., Lin, H., Zhao, H., Wang, J. Y., Ma, H., Chen, B., Xiao, Z. F., & Dai, J. W. (2009). The effect of collagen-binding NGF-β on the promotion of sciatic nerve regeneration in a rat sciatic nerve crush injury model. Biomaterials, 30(27), 4649–4656.

    Article  Google Scholar 

  38. Chung, H. J., Chung, W. H., Lee, J. H., Chung, D. J., Yang, W. J., Lee, A. J., Choi, C.-B., Chang, H.-S., Kim, D.-H., Suh, H. J., Lee, D.-H., Hwang, S.-H., Do, S. H., & Kim, H. Y. (2016). Expression of neurotrophic factors in injured spinal cord after transplantation of human-umbilical cord blood stem cells in rats. Journal of Veterinary Science, 17(1), 97–102.

    Article  Google Scholar 

  39. Santos, A. K., Gomes, K. N., Parreira, R. C., Scalzo, S., Pinto, M. C., Santiago, H. C., Birbrair, A., Sack, U., Ulrich, H., & Resende, R. R. (2021). Mouse neural stem cell differentiation and human adipose mesenchymal stem cell transdifferentiation into neuron-and oligodendrocyte-like cells with myelination potential. Stem Cell Reviews and Reports, 18(2), 732–751.

    Article  Google Scholar 

  40. Park, S., Seonwoo, H., Lim, K. T., Gwon, Y., Kim, D., Kim, W., Kim, S., Chung, J. H., & Kim, J. (2020). Engineering cell–graphene interface for controlling stem cell behavior. Soft matter and biomaterials on the nanoscale: The WSPC reference on functional nanomaterials—part I volume 4: nanomedicine: Nanoscale materials in nano/bio medicine (pp. 89–117). Singapore: World Scientific.

    Google Scholar 

  41. Osredkar, J., & Sustar, N. (2011). Copper and zinc, biological role and significance of copper/zinc imbalance. Journal of Clinical Toxicology, 3(2161), 0495.

    Google Scholar 

  42. Xu, Z., Shi, W. H., Xu, L. B., Shao, M. F., Chen, Z. P., Zhu, G. C., & Hou, Q. (2018). Resident microglia activate before peripheral monocyte infiltration and p75NTR blockade reduces microglial activation and early brain injury after subarachnoid hemorrhage. ACS Chemical Neuroscience, 10(1), 412–423.

    Article  Google Scholar 

  43. Park, J., Zhang, Y., Saito, E., Gurczynski, S. J., Moore, B. B., Cummings, B. J., Anderson, A. J., & Shea, L. D. (2019). Intravascular innate immune cells reprogrammed via intravenous nanoparticles to promote functional recovery after spinal cord injury. Proceedings of the National Academy of Sciences of United States of America, 116(30), 14947–14954.

    Article  Google Scholar 

  44. Cerqueira, S. R., Oliveira, J. M., Silva, N. A., Leite-Almeida, H., Ribeiro-Samy, S., Almeida, A., Mano, J. F., Sousa, N., Salgado, A. J., & Reis, R. L. (2013). Microglia response and in vivo therapeutic potential of methylprednisolone-loaded dendrimer nanoparticles in spinal cord injury. Small, 9(5), 738–749.

    Article  Google Scholar 

  45. Stammers, A. T., Liu, J., & Kwon, B. K. (2012). Expression of inflammatory cytokines following acute spinal cord injury in a rodent model. Journal of Neuroscience Research, 90(4), 782–790.

    Article  Google Scholar 

  46. Bao, F., Fleming, J. C., Golshani, R., Pearse, D. D., Kasabov, L., Brown, A., & Weaver, L. C. (2011). A selective phosphodiesterase-4 inhibitor reduces leukocyte infiltration, oxidative processes, and tissue damage after spinal cord injury. Journal of Neurotrauma, 28(6), 1035–1049.

    Article  Google Scholar 

  47. Ishikawa, N., Suzuki, Y., Dezawa, M., Kataoka, K., Ohta, M., Cho, H., & Ide, C. (2009). Peripheral nerve regeneration by transplantation of BMSC-derived Schwann cells as chitosan gel sponge scaffolds. Journal of Biomedical Materials Research Part A, 89(4), 1118–1124.

    Article  Google Scholar 

  48. Cemil, B., Ture, D., Cevirgen, B., Kaymaz, F., & Kaymaz, M. (2009). Comparison of collagen biomatrix and omentum effectiveness on peripheral nerve regeneration. Neurosurgical Review, 32(3), 355–362.

    Article  Google Scholar 

  49. Risitano, G., Cavallaro, G., Merrino, T., Coppolino, S., & Ruggeri, F. (2002). Clinical results and thoughts on sensory nerve repair by autologous vein graft in emergency hand reconstruction. Chirurgie de la Main, 21(3), 194–197.

    Article  Google Scholar 

  50. Hooper, R. C., Cederna, P. S., Brown, D. L., Haase, S. C., Waljee, J. F., Egeland, B. M., Kelley, B. P., & Kung, T. A. (2020). Regenerative peripheral nerve interfaces for the management of symptomatic hand and digital neuromas. Plastic and Reconstructive Surgery Global Open, 8(6), e2792.

    Article  Google Scholar 

  51. Shapira, Y., Tolmasov, M., Nissan, M., Reider, E., Koren, A., Biron, T., Bitan, Y., Livnat, M., Ronchi, G., Geuna, S., & Rochkind, S. (2016). Comparison of results between chitosan hollow tube and autologous nerve graft in reconstruction of peripheral nerve defect: An experimental study. Microsurgery, 36(8), 664–671.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to our colleagues for their contributions to the research, as well as the veterinarians at Mehregan Veterinary Clinic for performing the surgeries and providing technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nahid Askari or Mohammad Bagher Askari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The authors declare no conflict of interest. All procedures were approved by the Kerman University of Medical Sciences Animal Care and Use Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, N., Askari, M., Shafieipour, A. et al. The Effects of a Novel Multicomponent Transition Metal Dichalcogenide on Nervous System Regeneration. J Bionic Eng 19, 1449–1459 (2022). https://doi.org/10.1007/s42235-022-00215-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00215-y

Keywords

Navigation