Skip to main content
Log in

Adaptive Barebones Salp Swarm Algorithm with Quasi-oppositional Learning for Medical Diagnosis Systems: A Comprehensive Analysis

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The Salp Swarm Algorithm (SSA) may have trouble in dropping into stagnation as a kind of swarm intelligence method. This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning to compensate for the above weakness called QBSSA. In the proposed QBSSA, an adaptive barebones strategy can help to reach both accurate convergence speed and high solution quality; quasi-oppositional-based learning can make the population away from traping into local optimal and expand the search space. To estimate the performance of the presented method, a series of tests are performed. Firstly, CEC 2017 benchmark test suit is used to test the ability to solve the high dimensional and multimodal problems; then, based on QBSSA, an improved Kernel Extreme Learning Machine (KELM) model, named QBSSA–KELM, is built to handle medical disease diagnosis problems. All the test results and discussions state clearly that the QBSSA is superior to and very competitive to all the compared algorithms on both convergence speed and solutions accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. https://aliasgharheidari.com/HHO.html.

  2. https://aliasgharheidari.com/SMA.html.

  3. https://aliasgharheidari.com/HGS.html.

  4. https://aliasgharheidari.com/RUN.html.

References

  1. Wang, G. G. (2018). Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing, 10, 151–164.

    Google Scholar 

  2. Sun, Y. N., Yen, G. G., & Yi, Z. (2019). IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Transactions on Evolutionary Computation, 23, 173–187.

    Google Scholar 

  3. Wang, X. F., Zhao, H., Han, T., Zhou, H., & Li, C. (2019). A grey wolf optimizer using gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem. Applied Soft Computing, 78, 240–260.

    Google Scholar 

  4. Wang, X. Y., Chen, H. L., Heidari, A. A., Zhang, X., Xu, J., Xu, Y. T., & Huang, H. (2020). Multi-population following behavior-driven fruit fly optimization: a markov chain convergence proof and comprehensive analysis. Knowledge-Based Systems, 210, 106437.

    Google Scholar 

  5. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95 - international conference on neural networks, vol. 1944, pp. 1942–1948.

  6. Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39, 459–471.

    MathSciNet  MATH  Google Scholar 

  7. Assiri, A. S., Hussien, A. G., & Amin, M. (2020). Ant lion optimization: variants, hybrids, and applications. IEEE Access, 8, 77746–77764.

    Google Scholar 

  8. Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. L. (2019). Harris hawks optimization: algorithm and applications. Future Generation Computer Systems, 97, 849–872.

    Google Scholar 

  9. Chen, H. L., Jiao, S., Wang, M. J., Heidari, A. A., & Zhao, X. H. (2020). Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. Journal of Cleaner Production, 244, 118778.

    Google Scholar 

  10. Hussien, A. G., & Amin, M. (2021). A self-adaptive Harris Hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection. International Journal of Machine Learning and Cybernetics. https://doi.org/10.1007/s13042-021-01326-4.

  11. Song, S. M., Wang, P. J., Heidari, A. A., Wang, M. J., Zhao, X. H., Chen, H. L., He, W. M., & Xu, S. L. (2021). Dimension decided harris hawks optimization with gaussian mutation: balance analysis and diversity patterns. Knowledge-Based Systems, 215, 106425.

    Google Scholar 

  12. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.

    Google Scholar 

  13. Li, S. M., Chen, H. L., Wang, M. J., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: a new method for stochastic optimization. Future Generation Computer Systems, 111, 300–323.

    Google Scholar 

  14. Yang, Y. T., Chen, H. L., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864.

    Google Scholar 

  15. Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X. F., & Chen, H. L. (2021). RUN beyond the metaphor: an efficient optimization algorithm based on runge kutta method. Expert Systems with Applications, 181, 115079.

    Google Scholar 

  16. Tu, J. Z., Chen, H. L., Wang, M. J., & Gandomi, A. H. (2021). The colony predation algorithm. Journal of Bionic Engineering, 18, 674–710.

    Google Scholar 

  17. Zhang, Y. N., Liu, R. J., Wang, X., Chen, H. L., & Li, C. Y. (2020). Boosted binary Harris hawks optimizer and feature selection. Engineering with Computers, 3741–3770. https://doi.org/10.1007/s00366-020-01028-5.

  18. Hu, J., Chen, H. L., Heidari, A. A., Wang, M. J., Zhang, X. Q., Chen, Y., & Pan, Z. F. (2021). Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection. Knowledge-Based Systems, 213, 106684.

    Google Scholar 

  19. Zhang, X., Xu, Y. T., Yu, C. Y., Heidari, A. A., Li, S. M., Chen, H. L., & Li, C. Y. (2020). Gaussian mutational chaotic fruit fly-built optimization and feature selection. Expert Systems with Applications, 141, 112976.

    Google Scholar 

  20. Li, Q., Chen, H. L., Huang, H., Zhao, X. H., Cai, Z. N., Tong, C. F., Liu, W. B., & Tian, X. (2017). An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis. Computational and Mathematical Methods in Medicine, 2017, 9512741.

    Google Scholar 

  21. Liu, T., Hu, L., Ma, C., Wang, Z. Y., & Chen, H. L. (2015). A fast approach for detection of erythemato-squamous diseases based on extreme learning machine with maximum relevance minimum redundancy feature selection. International Journal of Systems Science, 46, 919–931.

    MATH  Google Scholar 

  22. Hussien, A. G., Oliva, D., Houssein, E. H., Juan, A. A., & Yu, X. (1821). Binary whale optimization algorithm for dimensionality reduction. Mathematics, 2020, 8.

    Google Scholar 

  23. Chen, M. R., Zeng, G. Q., Lu, K. D., & Weng, J. (2019). A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM. IEEE Internet of Things Journal, 6, 6997–7010.

    Google Scholar 

  24. Gupta, S., Deep, K., Heidari, A. A., Moayedi, H., & Chen, H. L. (2021). Harmonized salp chain-built optimization. Engineering with Computers, 37, 1049–1079.

    Google Scholar 

  25. Ba, A. F., Huang, H., Wang, M. J., Ye, X. J., Gu, Z. Y., Chen, H. L., & Cai, X. D. (2020). Levy-based antlion-inspired optimizers with orthogonal learning scheme. Engineering with Computers, 1–22. https://doi.org/10.1007/s00366-020-01042-7.

  26. Zhang, H. L., Cai, Z. N., Ye, X. J., Wang, M. J., Kuang, F. J., Chen, H. L., Li, C. Y., & Li, Y. P. (2020). A multi-strategy enhanced salp swarm algorithm for global optimization. Engineering with Computers. https://doi.org/10.1007/s00366-020-01083-y.

  27. Liang, X., Cai, Z. N., Wang, M. J., Zhao, X. H., Chen, H. L., & Li, C. Y. (2020). Chaotic oppositional sine–cosine method for solving global optimization problems. Engineering with Computers, 1–17.

  28. Zhou, H. M., Pang, J. H., Chen, P. K., & Chou, F. D. (2018). A modified particle swarm optimization algorithm for a batch-processing machine scheduling problem with arbitrary release times and non-identical job sizes. Computers & Industrial Engineering, 123, 67–81.

    Google Scholar 

  29. Zhao, D., Liu, L., Yu, F. H., Heidari, A. A., Wang, M. J., Liang, G. X., Muhammad, K., & Chen, H. L. (2021). Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy. Knowledge-Based Systems, 216, 106510.

    Google Scholar 

  30. Zhao, D., Liu, L., Yu, F. H., Heidari, A. A., Wang, M. J., Oliva, D., Muhammad, K., & Chen, H. L. (2021). Ant colony optimization with horizontal and vertical crossover search: Fundamental visions for multi-threshold image segmentation. Expert Systems with Applications, 167, 114122.

    Google Scholar 

  31. Zeng, G. Q., Lu, Y. Z., & Mao, W. J. (2011). Modified extremal optimization for the hard maximum satisfiability problem. Journal of Zhejiang University Science C, 12, 589–596.

    Google Scholar 

  32. Zeng, G. Q., Lu, Y. Z., Dai, Y. X., Wu, Z. G., Mao, W. J., Zhang, Z. J., & Zheng, C. W. (2012). Backbone guided extremal optimization for the hard maximum satisfiability problem. International Journal of Innovative Computing, Information and Control, 8, 8355–8366.

    Google Scholar 

  33. Hu, L. F., Li, H. Z., Cai, Z. N., Lin, F. Y., Hong, G. L., Chen, H. L., & Lu, Z. Q. (2017). A new machine-learning method to prognosticate paraquat poisoned patients by combining coagulation, liver, and kidney indices. PLoS ONE, 12, e0186427.

    Google Scholar 

  34. Li, C. Y., Hou, L. X., Sharma, B. Y., Li, H. Z., Chen, C. S., Li, Y. P., Zhao, X. H., Huang, H., Cai, Z. N., & Chen, H. L. (2018). Developing a new intelligent system for the diagnosis of tuberculous pleural effusion. Computer Methods and Programs in Biomedicine, 153, 211–225.

    Google Scholar 

  35. Zhao, X. H., Zhang, X., Cai, Z. N., Tian, X., Wang, X. Q., Huang, Y., Chen, H. L., & Hu, L. F. (2019). Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Computational biology and chemistry, 78, 481–490.

    Google Scholar 

  36. Huang, H., Feng, X. A., Zhou, S. Y., Jiang, J. H., Chen, H. L., Li, Y. P., & Li, C. Y. (2019). A new fruit fly optimization algorithm enhanced support vector machine for diagnosis of breast cancer based on high-level features. BMC Bioinformatics, 20, 290.

    Google Scholar 

  37. Zhang, Y. N., Liu, R. J., Heidari, A. A., Wang, X., Chen, Y., Wang, M. J., & Chen, H. L. (2021). Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis. Neurocomputing, 430, 185–212.

    Google Scholar 

  38. Yu, C. Y., Chen, M. X., Cheng, K., Zhao, X. H., Ma, C., Kuang, F. J., & Chen, H. L. (2021). SGOA: annealing-behaved grasshopper optimizer for global tasks. Engineering with Computers, 1–28. https://doi.org/10.1007/s00366-020-01234-1.

  39. Cai, Z. N., Gu, J. H., Luo, J., Zhang, Q., Chen, H. L., Pan, Z. F., Li, Y. P., & Li, C. Y. (2019). Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy. Expert Systems with Applications, 138, 112814.

    Google Scholar 

  40. Heidari, A. A., Rahim, A. A., & Chen, H. L. (2019). Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training. Applied Soft Computing, 81, 105521.

    Google Scholar 

  41. Shen, L. M., Chen, H. L., Yu, Z., Kang, W. C., Zhang, B. Y., Li, H. Z., Yang, B., & Liu, D. Y. (2016). Evolving support vector machines using fruit fly optimization for medical data classification. Knowledge-Based Systems, 96, 61–75.

    Google Scholar 

  42. Wang, M. J., Chen, H. L., Yang, B., Zhao, X. H., Hu, L. F., Cai, Z. N., Huang, H., & Tong, C. F. (2017). Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing, 267, 69–84.

    Google Scholar 

  43. Wang, M. J., & Chen, H. L. (2020). Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Applied Soft Computing, 88, 105946.

    Google Scholar 

  44. Zeng, G. Q., Lu, K. D., Dai, Y. X., Zhang, Z. J., Chen, M. R., Zheng, C. W., Wu, D., & Peng, W. W. (2014). Binary-coded extremal optimization for the design of PID controllers. Neurocomputing, 138, 180–188.

    Google Scholar 

  45. Zeng, G. Q., Chen, J., Dai, Y. X., Li, L. M., Zheng, C. W., & Chen, M. R. (2015). Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing, 160, 173–184.

    Google Scholar 

  46. Zeng, G. Q., Xie, X. Q., Chen, M. R., & Weng, J. (2019). Adaptive population extremal optimization-based PID neural network for multivariable nonlinear control systems. Swarm and Evolutionary Computation, 44, 320–334.

    Google Scholar 

  47. Deng, W., Xu, J. J., Zhao, H. M., & Song, Y. J. (2020). A novel gate resource allocation method using improved PSO-based QEA. IEEE Transactions on Intelligent Transportation Systems, 1–9. https://doi.org/10.1109/TITS.2020.3025796.

  48. Deng, W., Xu, J. J., Song, Y. J., & Zhao, H. M. (2020). An effective improved co-evolution ant colony optimization algorithm with multi-strategies and its application. International Journal of Bio-Inspired Computation, 16(3), 158–170.

  49. Deng, W., Liu, H. L., Xu, J. J., Zhao, H. M., & Song, Y. J. (2020). An improved quantum-inspired differential evolution algorithm for deep belief network. IEEE Transactions on Instrumentation and Measurement, 69, 7319–7327.

    Google Scholar 

  50. Zhao, H. M., Liu, H. D., Xu, J. J., & Deng, W. (2020). Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine. IEEE Transactions on Instrumentation and Measurement, 69, 4165–4172.

    Google Scholar 

  51. Zhao, X. H., Li, D. L., Yang, B., Ma, C., Zhu, Y. G., & Chen, H. L. (2014). Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Applied Soft Computing, 24, 585–596.

    Google Scholar 

  52. Zhao, X. H., Li, D. L., Yang, B., Chen, H. L., Yang, X. B., Yu, C. L., & Liu, S. Y. (2015). A two-stage feature selection method with its application. Computers & Electrical Engineering, 47, 114–125.

    Google Scholar 

  53. Wei, Y., Lv, H. J., Chen, M. X., Wang, M. J., Heidari, A. A., Chen, H. L., & Li, C. Y. (2020). Predicting entrepreneurial intention of students: an extreme learning machine with gaussian barebone Harris hawks optimizer. IEEE Access, 8, 76841–76855.

    Google Scholar 

  54. Zhu, W., Ma, C., Zhao, X. H., Wang, M. J., Heidari, A. A., Chen, H. L., & Li, C. Y. (2020). Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine. IEEE Access, 8, 61107–61123.

    Google Scholar 

  55. Lin, A. J., Wu, Q. Q., Heidari, A. A., Xu, Y. T., Chen, H. L., Geng, W. J., Li, Y. P., & Li, C. Y. (2019). Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy k-nearest neighbor classifier. IEEE Access, 7, 67235–67248.

    Google Scholar 

  56. Tu, J. X., Lin, A. J., Chen, H. L., Li, Y. P., & Li, C. Y. (2019). Predict the entrepreneurial intention of fresh graduate students based on an adaptive support vector machine framework. Mathematical Problems in Engineering, 2019, 2039872.

    Google Scholar 

  57. Yan, W., Ni, N., Liu, D. Y., Chen, H. L., Wang, M. J., Li, Q., Cui, X. J., & Ye, H. P. (2017). An improved grey wolf optimization strategy enhanced SVM and its application in predicting the second major. Mathematical Problems in Engineering, 2017, 9316713.

    Google Scholar 

  58. Abbassi, A., Abbassi, R., Heidari, A. A., Oliva, D., Chen, H., Habib, A., Jemli, M., & Wang, M. (2020). Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach. Energy, 198, 117333.

    Google Scholar 

  59. Aljarah, I., Habib, M., Faris, H., Al-Madi, N., Heidari, A. A., Mafarja, M., Elaziz, M. A., & Mirjalili, S. (2020). A dynamic locality multi-objective salp swarm algorithm for feature selection. Computers & Industrial Engineering, 147, 106628.

    Google Scholar 

  60. Al-Zoubi, A. M., Heidari, A. A., Habib, M., Faris, H., Aljarah, I., & Hassonah, M. A. (2020). Salp chain-based optimization of support vector machines and feature weighting for medical diagnostic information systems. In S. Mirjalili, H. Faris, & I. Aljarah (Eds.), Evolutionary machine learning techniques: algorithms and applications (pp. 11–34). Singapore: Springer Singapore.

    Google Scholar 

  61. Elaziz, M. A., Heidari, A. A., Fujita, H., & Moayedi, H. (2020). A competitive chain-based Harris hawks optimizer for global optimization and multi-level image thresholding problems. Applied Soft Computing, 95, 106347.

    Google Scholar 

  62. Faris, H., Heidari, A. A., Al-Zoubi, A. M., Mafarja, M., Aljarah, I., Eshtay, M., & Mirjalili, S. (2020). Time-varying hierarchical chains of salps with random weight networks for feature selection. Expert Systems with Applications, 140, 112898.

    Google Scholar 

  63. Faris, H., Mirjalili, S., Aljarah, I., Mafarja, M., & Heidari, A. A. (2020). Salp swarm algorithm: theory, literature review, and application in extreme learning machines. In S. Mirjalili, J. Song Dong, & A. Lewis (Eds.), Nature-inspired optimizers: theories, literature reviews and applications (pp. 185–199). Cham: Springer International Publishing.

    Google Scholar 

  64. Liu, Y., Shi, Y., Chen, H., Heidari, A. A., Gui, W., Wang, M., Chen, H., & Li, C. (2021). Chaos-assisted multi-population salp swarm algorithms: framework and case studies. Expert Systems with Applications, 168, 114369.

    Google Scholar 

  65. Cui, L. G., Wang, L., Deng, J., & Zhang, J. L. (2015). Intelligent algorithms for a new joint replenishment and synthetical delivery problem in a warehouse centralized supply chain. Knowledge-Based Systems, 90, 185–198.

    Google Scholar 

  66. Zhang, Q., Chen, H. L., Heidari, A. A., Zhao, X. H., Xu, Y. Y., Wang, P. J., Li, Y. P., & Li, C. Y. (2019). Chaos-induced and mutation-driven schemes boosting salp chains-inspired optimizers. IEEE Access, 7, 31243–31261.

    Google Scholar 

  67. Khamess, M., Albakr, A. Y., & Shaker, K. (2018). A new approach for features selection based on binary slap swarm algorithm. Journal of Theoretical & Applied Information Technology, 96(7), 1896–1906.

  68. Faris, H., Mafarja, M. M., Heidari, A. A., Aljarah, L., Al-Zoubi, A. M., Mirjalili, S., & Fujita, H. (2018). An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowledge-Based Systems, 154, 43–67.

    Google Scholar 

  69. Chen, F. F., Yang, Y. P., Tang, B. P., Chen, B. J., Xiao, W. R., & Zhong, X. Y. (2020). Performance degradation prediction of mechanical equipment based on optimized multi-kernel relevant vector machine and fuzzy information granulation. Measurement, 151, 107116.

    Google Scholar 

  70. Gu, F., Ma, B. Q., Guo, J. F., Summers, P. A., & Hall, P. (2017). Internet of things and big data as potential solutions to the problems in waste electrical and electronic equipment management: an exploratory study. Waste Management, 68, 434–448.

    Google Scholar 

  71. Zhu, B. Z., Su, B., & Li, Y. Z. (2018). Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14. Applied Energy, 230, 1545–1556.

    Google Scholar 

  72. Liu, Y. X., Yang, C. N., & Sun, Q. D. (2021). Thresholds based image extraction schemes in big data environment in intelligent traffic management. IEEE Transactions on Intelligent Transportation Systems, 22, 3952–3960.

    Google Scholar 

  73. Hussien, A. G., Hassanien, A. E., & Houssein, E. H. (2017). Swarming behaviour of salps algorithm for predicting chemical compound activities. Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), 2017, 315–320.

    Google Scholar 

  74. Wang, M., Zhao, Y., Liu, L., & Xu, J. (2018). Voice conversion based on quantum particle swarm optimization of generalized regression neural network. Chinese Journal of Liquid Crystals and Displays, 33, 165–173.

    Google Scholar 

  75. Zhao, H. M., Zuo, S. Y., Hou, M., Liu, W., Yu, L., Yang, X. H., & Deng, W. (2018). A novel adaptive signal processing method based on enhanced empirical wavelet transform technology. Sensors, 18, 1–17.

    Google Scholar 

  76. Yu, H. L., Yuan, K., Li, W. S., Zhao, N. N., Chen, W. B., Huang, C. C., Chen, H. L., & Wang, M. J. (2021). Improved butterfly optimizer-configured extreme learning machine for fault diagnosis. Complexity, 2021, 6315010.

    Google Scholar 

  77. Ibrahim, R. A., Ewees, A. A., Oliva, D., Abd Elaziz, M., & Lu, S. F. (2019). Improved salp swarm algorithm based on particle swarm optimization for feature selection. Journal of Ambient Intelligence and Humanized Computing, 10, 3155–3169.

    Google Scholar 

  78. Sayed, G. I., Khoriba, G., & Haggag, M. H. (2018). A novel chaotic salp swarm algorithm for global optimization and feature selection. Applied Intelligence, 48, 3462–3481. https://doi.org/10.1007/s12652-021-02892-9.

    Article  Google Scholar 

  79. Rizk-Allah, R. M., Hassanien, A. E., Elhoseny, M., & Gunasekaran, M. (2019). A new binary salp swarm algorithm: development and application for optimization tasks. Neural Computing and Applications, 31, 1641–1663.

    Google Scholar 

  80. Zhang, H. L., Wang, Z. Y., Chen, W. B., Heidari, A. A., Wang, M. J., Zhao, X. H., Liang, G. X., Chen, H. L., & Zhang, X. (2021). Ensemble mutation-driven salp swarm algorithm with restart mechanism: framework and fundamental analysis. Expert Systems with Applications, 165, 113897.

    Google Scholar 

  81. Panda, N., & Majhi, S. K. (2020). Improved salp swarm algorithm with space transformation search for training neural network. Arabian Journal for Science and Engineering, 45, 2743–2761.

    Google Scholar 

  82. Panda, N., & Majhi, S. K. (2020). How effective is the salp swarm algorithm in data classification. In A. K. Das, J. Nayak, B. Naik, S. K. Pati, & D. Pelusi (Eds.), Computational intelligence in pattern recognition (pp. 579–588). Singapore: Springer Singapore.

    Google Scholar 

  83. Hussien, A. G. (2021). An enhanced opposition-based salp swarm algorithm for global optimization and engineering problems. Journal of Ambient Intelligence and Humanized Computing, 1–21.

  84. Panda, N., & Majhi, S. K. (2020). Effectiveness of swarm-based metaheuristic algorithm in data classification using pi-sigma higher order neural network. In C. R. Panigrahi, B. Pati, P. Mohapatra, R. Buyya, & K.-C. Li (Eds.), Progress in advanced computing and intelligent engineering (pp. 77–88). Singapore: Springer Singapore.

    Google Scholar 

  85. Panda, N., & Majhi, S. K. (2021). Oppositional salp swarm algorithm with mutation operator for global optimization and application in training higher order neural networks. Multimedia Tools and Applications, 1–25. https://doi.org/10.1007/s00366-020-01252-z.

  86. Nautiyal, B., Prakash, R., Vimal, V., Liang, G., & Chen, H. (2021). Improved salp swarm algorithm with mutation schemes for solving global optimization and engineering problems. Engineering with Computers.

  87. Zhang, H. L., Li, R., Cai, Z. N., Gu, Z. Y., Heidari, A. A., Wang, M. J., Chen, H. L., & Chen, M. Y. (2020). Advanced orthogonal moth flame optimization with broyden–fletcher–goldfarb–shanno algorithm: framework and real-world problems. Expert Systems with Applications, 159, 113617.

    Google Scholar 

  88. Erick, R. E., Laura, Z. C., Oliva, D., Heidari, A. A., Zaldivar, D., Marco, P. C., & Foong, L. K. (2020). An efficient Harris hawks-inspired image segmentation method. Expert Systems with Applications, 155, 113428.

    Google Scholar 

  89. Tizhoosh, H. R. (2005). Opposition-based learning: a new scheme for machine intelligence. In Proceedings - international conference on computational intelligence for modelling, control and automation, CIMCA 2005 and international conference on intelligent agents, web technologies and internet, IEEE Vienna, Austria, pp. 695–701.

  90. Zeng, H. B., Liu, X. G., & Wang, W. (2019). A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems. Applied Mathematics and Computation, 354, 1–8.

    MathSciNet  MATH  Google Scholar 

  91. Liu, Y. X., Yang, C. N., Sun, Q. D., & Chen, Y. C. (2020). (k, n) scalable secret image sharing with multiple decoding options. Journal of Intelligent & Fuzzy Systems, 38, 219–228.

    Google Scholar 

  92. Clerc, M., & Kennedy, J. (2002). The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6, 58–73.

    Google Scholar 

  93. Van Den Bergh, F., & Engelbrecht, A. P. (2006). A study of particle swarm optimization particle trajectories. Information Sciences, 176, 937–971.

    MathSciNet  MATH  Google Scholar 

  94. Kennedy, J. (2003). Bare bones particle swarms. In Proceedings of the 2003 IEEE swarm intelligence symposium, SIS’03, pp. 80–87.

  95. Huang, G. B., Zhou, H. M., Ding, X. J., & Zhang, R. (2012). Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42, 513–529.

    Google Scholar 

  96. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: a new learning scheme of feedforward neural networks. In 2004 IEEE international joint conference on neural networks, vol. 982, pp. 985–990.

  97. Sun, Y. N., Xue, B., Zhang, M. J., & Yen, G. G. (2020). Evolving deep convolutional neural networks for image classification. IEEE Transactions on Evolutionary Computation, 24, 394–407.

    Google Scholar 

  98. Sun, Y. N., Xue, B., Zhang, M. J., Yen, G. G., & Lv, J. C. (2020). Automatically designing CNN architectures using the genetic algorithm for image classification. IEEE Transactions on Cybernetics, 50, 3840–3854.

    Google Scholar 

  99. Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1, 3–18.

    Google Scholar 

  100. Awad, N. H., Ali, A. H., Suganthan, P. N., Liang, J. J., & Qu, B. Y. (2016). Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. https://github.com/P-N-Suganthan/CEC2017-BoundContrained/blob/master/Bound-Constrained-Comparisons.pdf

  101. Chen, W. N., Zhang, J., Lin, Y., Chen, N., Zhan, Z. H., Chung, H. S., Li, Y., & Shi, Y. H. (2013). Particle swarm optimization with an aging leader and challengers. IEEE Transactions on Evolutionary Computation, 17, 241–258.

    Google Scholar 

  102. Sun, T. Y., Liu, C. C., Tsai, S. J., Hsieh, S. T., & Li, K. Y. (2011). Cluster guide particle swarm optimization (CGPSO) for underdetermined blind source separation with advanced conditions. IEEE Transactions on Evolutionary Computation, 15, 798–811.

    Google Scholar 

  103. Qais, M. H., Hasanien, H. M., & Alghuwainem, S. (2019). Enhanced salp swarm algorithm: application to variable speed wind generators. Engineering Applications of Artificial Intelligence, 80, 82–96.

    Google Scholar 

  104. García-Martínez, C., Lozano, M., Herrera, F., Molina, D., & Sánchez, A. M. (2008). Global and local real-coded genetic algorithms based on parent-centric crossover operators. European Journal of Operational Research, 185, 1088–1113.

    MATH  Google Scholar 

  105. Jia, D. L., Zheng, G. X., & Muhammad, K. K. (2011). An effective memetic differential evolution algorithm based on chaotic local search. Information Sciences, 181, 3175–3187.

    Google Scholar 

  106. Tubishat, M., Abushariah, Ma. M., Idris, N., & Aljarah, I. (2018). Improved whale optimization algorithm for feature selection in Arabic sentiment analysis. Applied Intelligence, 49, 1688–1707.

    Google Scholar 

  107. Ling, Y., Zhou, Y. Q., & Luo, Q. F. (2017). Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access, 5, 6168–6186.

    Google Scholar 

  108. Asuncion, A., & Newman, D. UCI machine learning repository. https://archive.ics.uci.edu/ml/index.php

  109. Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2, Article 27.

  110. Wu, X., Xu, X. Y., Liu, J. H., Wang, H. L., Hu, B., & Nie, F. P. (2021). Supervised feature selection with orthogonal regression and feature weighting. IEEE Transactions on Neural Networks and Learning Systems, 32, 1831–1838.

    MathSciNet  Google Scholar 

  111. Zhang, L. J., Zou, Y. F., Wang, W. Z., Jin, Z. L., Su, Y. S., & Chen, H. L. (2021). Resource allocation and trust computing for blockchain-enabled edge computing system. Computers & Security, 105, 102249.

    Google Scholar 

  112. Zhang, L. J., Zhang, Z. J., Wang, W. Z., Waqas, R., Zhao, C. H., Kim, S., & Chen, H. L. (2020). A covert communication method using special bitcoin addresses generated by vanitygen. Computers, Materials & Continua, 65, 597–616.

    Google Scholar 

  113. Zhang, L. J., Zhang, Z. J., Wang, W. Z., Jin, Z. L., Su, Y. S., & Chen, H. L. (2021). Research on a covert communication model realized by using smart contracts in blockchain environment. IEEE Systems Journal, 1–12. https://doi.org/10.1109/JSYST.2021.3057333.

  114. Xue, X., Wang, S. F., Zhang, L. J., Feng, Z. Y., & Guo, Y. D. (2019). Social learning evolution (SLE): Computational experiment-based modeling framework of social manufacturing. IEEE Transactions on Industrial Informatics, 15, 3343–3355.

    Google Scholar 

  115. Xue, X., Chen, Z., Wang, S., Feng, Z., Duan, Y., & Zhou, Z. (2020). Value entropy: a systematic evaluation model of service ecosystem evolution. IEEE Transactions on Services Computing, 1–1. https://doi.org/10.1109/TSC.2020.3016660

  116. Cao, X. Y., Cao, T. X., Gao, F., & Guan, X. H. (2021). Risk-averse storage planning for improving RES hosting capacity under uncertain siting choice. IEEE Transactions on Sustainable Energy, 12(4), 1984–1995.

  117. Fan, M. Y., Zhang, X. Q., Hu, J., Gu, N. N., & Tao, D. C. (2021). Adaptive data structure regularized multiclass discriminative feature selection. IEEE Transactions on Neural Networks and Learning Systems, 1–14. https://doi.org/10.1109/TNNLS.2021.3071603.

  118. Zhang, X. Q., Fan, M. Y., Wang, D., Zhou, P., & Tao, D. C. (2020). Top-k feature selection framework using robust 0–1 integer programming. IEEE Transactions on Neural Networks and Learning Systems, 1–15.

  119. Zhang, X. Q., Li, W., Ye, X. Z., & Maybank, S. (2015). Robust hand tracking via novel multi-cue integration. Neurocomputing, 157, 296–305.

    Google Scholar 

  120. Wang, S. J., He, Y., Li, J. T., & Fu, X. L. (2021). MESNet: a convolutional neural network for spotting multi-scale micro-expression intervals in long videos. IEEE Transactions on Image Processing, 30, 3956–3969.

    Google Scholar 

  121. Li, J. T., Soladie, C., & Seguier, R. (2020). Local temporal pattern and data augmentation for micro-expression spotting. IEEE Transactions on Affective Computing, 1–1. https://doi.org/10.1109/TAFFC.2020.3023821.

  122. Zhao, H. L., Guo, H. Y., Jin, X. G., Shen, J. B., Mao, X. Y., & Liu, J. R. (2018). Parallel and efficient approximate nearest patch matching for image editing applications. Neurocomputing, 305, 39–50.

    Google Scholar 

  123. Zhao, Y. D., Jin, X. G., Xu, Y. Q., Zhao, H. L., Ai, M., & Zhou, K. (2015). Parallel style-aware image cloning for artworks. IEEE Transactions on Visualization and Computer Graphics, 21, 229–240.

    Google Scholar 

  124. Yang, Y., Zhao, H. L., You, L. H., Tu, R. L., Wu, X. Y., & Jin, X. G. (2017). Semantic portrait color transfer with internet images. Multimedia Tools and Applications, 76, 523–541.

    Google Scholar 

  125. Wang, T., Zhao, L., Huang, P. C., Zhang, X. Q., & Xu, J. W. (2021). Haze concentration adaptive network for image dehazing. Neurocomputing, 439, 75–85.

    Google Scholar 

  126. Huang, P. C., Zhao, L., Jiang, R. H., Wang, T., & Zhang, X. Q. (2021). Self-filtering image dehazing with self-supporting module. Neurocomputing, 432, 57–69.

    Google Scholar 

  127. Zhang, X. Q., Wang, T., Wang, J. X., Tang, G. Y., & Zhao, L. (2020). Pyramid channel-based feature attention network for image dehazing. Computer Vision and Image Understanding, 197–198, 103003.

    Google Scholar 

  128. Chen, H. C., Yang, B., Pei, H. B., & Liu, J. M. (2019). Next generation technology for epidemic prevention and control: data-driven contact tracking. IEEE Access, 7, 2633–2642.

    Google Scholar 

  129. Chen, H. C., Yang, B., Liu, J. M., Zhou, X. N., & Yu, P. S. (2019). Mining spatiotemporal diffusion network: a new framework of active surveillance planning. IEEE Access, 7, 108458–108473.

    Google Scholar 

  130. Liu, X. Y., Yang, B., Chen, H. C., Musial, K., Chen, H. X., Li, Y., & Zuo, W. L. (2021). A scalable redefined stochastic blockmodel. ACM Transactions on Knowledge Discovery from Data, 15, 1–28.

    Google Scholar 

  131. Yang, C., Zhao, H. S., Bruzzone, L., Benediktsson, J. A., Liang, Y. C., Liu, B., Zeng, X. G., Guan, R. C., Li, C. L., & Ouyang, Z. Y. (2020). Lunar impact crater identification and age estimation with chang’E data by deep and transfer learning. Nature Communications, 11, 6358.

    Google Scholar 

  132. Jin, L., Wen, Z. J., & Hu, Z. Y. (2021). Topology-preserving nonlinear shape registration on the shape manifold. Multimedia Tools and Applications, 80, 17377–17389.

    Google Scholar 

  133. Li, J., Chen, C. C., Chen, H. L., & Tong, C. F. (2017). Towards context-aware social recommendation via individual trust. Knowledge-Based Systems, 127, 58–66.

    Google Scholar 

  134. Li, J., & Lin, J. (2020). A probability distribution detection based hybrid ensemble QoS prediction approach. Information Sciences, 519, 289–305.

    MathSciNet  Google Scholar 

  135. Li, J., Zheng, X. L., Chen, S. T., Song, W. W., & Chen, D. R. (2014). An efficient and reliable approach for quality-of-service-aware service composition. Information Sciences, 269, 238–254.

    Google Scholar 

  136. Pei, H. B., Yang, B., Liu, J. M., & Chang, K. (2020). Active surveillance via group sparse bayesian learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/TPAMI.2020.3023092.

  137. Qiu, S., Wang, Z. L., Zhao, H. Y., Qin, K. R., Li, Z. L., & Hu, H. S. (2018). Inertial/magnetic sensors based pedestrian dead reckoning by means of multi-sensor fusion. Information Fusion, 39, 108–119.

    Google Scholar 

  138. Qiu, S., Wang, Z. L., Zhao, H. Y., & Hu, H. S. (2016). Using distributed wearable sensors to measure and evaluate human lower limb motions. IEEE Transactions on Instrumentation and Measurement, 65, 939–950.

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (62076185, U1809209). This research is also supported by Zhejiang Provincial Natural Science Foundation of China (LY21F020030), Wenzhou Major Scientific and Technological Innovation Project (ZY2019019), Wenzhou Science and Technology Bureau (2018ZG016). We thank Ali Asghar Heidari (https://aliasgharheidari.com) for his help in the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rizeng Li, Huiling Chen or Zhifang Pan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, J., Zhang, H., Li, R. et al. Adaptive Barebones Salp Swarm Algorithm with Quasi-oppositional Learning for Medical Diagnosis Systems: A Comprehensive Analysis. J Bionic Eng 19, 240–256 (2022). https://doi.org/10.1007/s42235-021-00114-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00114-8

Keywords

Navigation