Skip to main content
Log in

Characterization of Novel Lignocellulosic Spinifex littoreus Fibers and Their Composites

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This innovative work presents mechanical, physical and chemical characterization and analysis of newly extracted fiber from naturally resourced plant stem, named Spinifex littoreus fibers (SLF). This is a novel natural, biodegradable and sustainable reinforcement for an improved composite. Initially, the chemical constituents of SLF, such as cellulose, lignin, moisture and wax content were studied. The raw SLF surfaces were modified by chemical treatment with sodium hydroxide (NaOH), calcium hydroxide (Ca(OH)2) and silane. A polyester matrix was reinforced with all the treated SLF, before the mechanical properties (tensile strengths) of the composites were determined. Among all the surface chemically treated SLF/polyester composite samples, the Ca(OH)2 treated sample exhibited the highest tensile strength. Further microscopic examination was carried out to validate this result. Also, this analysis established the mechanism of failure of the tensile fractured composite samples, using Scanning Electron Microscope (SEM), among other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sreenivasan V S, Ravindran D, Manikandan V, Narayanasamy R. Mechanical properties of randomly oriented short Sansevieria cylindrica fiber/polyester composites. Materials & Design, 2011, 32, 2444–2455.

    Article  Google Scholar 

  2. Kommula V P, Obi Reddy K, Shukla M, Marwala T, Varada Rajulu A. Physico-chemical, tensile, and thermal characterization of Napier grass (native African) fiber strands. International Journal of Polymer Analysis and Characterization, 2013, 18, 303–314.

    Article  Google Scholar 

  3. Jayaramudu J, Siva Mohan Reddy G, Varaprasad K, Sadiku E R, Sinha Ray S, Varada Rajulu A. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites. Carbohydrate Polymers, 2013, 93, 622–627.

    Article  Google Scholar 

  4. Sreenivasan V S, Somasundaram S, Ravindran D, Manikandan V, Narayanasamy R. Microstructural, physio-chemical and mechanical characterization of Sansevieria cylindica fibers — An exploratory investication. Materials & Design, 2011, 32, 453–161.

    Article  Google Scholar 

  5. Jawaid M, Alothman O N, Saba Y, El-Shekeil Y A, Tahir P M. Effect of chemical modifications of fibers on tensile properties of epoxy hybrid composites. International Journal of Polymer Analysis and Characterization, 2014, 19, 391–403.

    Article  Google Scholar 

  6. Abdullah A, Jamaludin S B, Anwar M L, Noor M M, Hussin K. Assessment of physical and mechanical properties of cement panel influenced by treated and untreated coconut fiber addition. Physics Procedia, 2011, 22, 263–269.

    Article  Google Scholar 

  7. Benitez A N, Monzon M D, Angulo I, Ortega Z, Hernandez P M, Marrero M D. Treatment of banana fiber for use in the reinforcement of polymetric matrices. Measurement, 2013, 46, 1065–1073.

    Article  Google Scholar 

  8. John M J, Anandjiwala R D. Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polymer Composites, 2008, 29, 187–207.

    Article  Google Scholar 

  9. Obi Reddy K, Uma Maheswari C, Ramalkishna Reddy K, Shukla M, Muzenda E, Varada Rajulu A. Effect of chemicals treatment and fiber loading on mechanical properties of Borassus (Toddy Palm) fiber/epoxy composites. International Journal of Polymer Analysis and Characterization, 2015, 20, 612–626.

    Article  Google Scholar 

  10. Lee S H, Wang S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A: Applied Science and Manufacturing, 2006, 37, 80–91.

    Article  Google Scholar 

  11. Singha A S, Thakur V K, Mehta I K, Shama A, Khanna A J, Rana R K, Rana A K. Surface modified Hibiscus sabdariffa fibers: Physico-chemical, thermal and morphological properties evaluation. International Journal of Polymer Analysis and Characterization, 2009, 14, 695–711.

    Article  Google Scholar 

  12. Thakur V K, Singha A S, Thakur M K. Natural cellulosic polymers as potential reinforcement in composites: Physicochemical and mechanical studies. Advances in Polymer Technology, 2013, 32, 427–435.

    Article  Google Scholar 

  13. Thakur V K, Singha A S. Rapid synthesis, characterization, and physicochemical analysis of biopolymer — Based graft copolymers. International Journal of Polymer Analysis and Characterization, 2011, 16, 153–164.

    Article  Google Scholar 

  14. Joseph K, Varghese S, Kalaprasad G, Thomas S, Prasannakumari L, Koshy P, Pavithran C. Influence of interfacial adhesion on the mechanical properties and fracture behaviour of short sisal fibre reinforced polymer composites. European Polymer Journal, 1996, 32, 1243–1250.

    Article  Google Scholar 

  15. Norul Izani M A, Paridah M T, Anwar U M K, Mohd Nor M Y, H’ng P S. Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Composites Part B: Engineering, 2013, 45, 1251–1257.

    Article  Google Scholar 

  16. Lee K E, Poh B T, Morad N, Teng T T. Synthesis and characterization of hydrophobically modified cationic acrylamide copolymer. International Journal of Polymer Analysis and Characterization, 2008, 13, 95–107.

    Article  Google Scholar 

  17. Chowdhury M N K, Beg M D H, Khan M R, Mina M F. Modification of oil palm empty fruit bunch fibers by nanoparticle impregnation and alkali treatment. Cellulose, 2013, 20, 1477–1490.

    Article  Google Scholar 

  18. Alawa A, Hamed A M, Al-Kaabi K. Characterization of treated date palm tree fiber as composite reinforcement. Composites Part B: Engineering, 2009, 40, 601–606.

    Article  Google Scholar 

  19. Bachtiar D, Sapuan S M, Hamdan M M. The influence of alkaline surface fibre treatment on the impact properties of sugar palm fibre-reinforced epoxy composites. Polymer — Plastics Technology and Engineering, 2009, 48, 379–383.

    Article  Google Scholar 

  20. Thakur V K, Singha A S, Kaur I, Nagarajarao R P, Yang L. Silane functionalization of Saccaharum cilliare fibers: Thermal, morphological, and physicochemical study. International Journal of Polymer Analysis and Characterization, 2010, 15, 397–414.

    Article  Google Scholar 

  21. Rout J, Misra M, Tripathy S S, Nayak S K, Mohanty A K. The influence of fibre treatment on the performance of coir-polyester composites. Composites Science and Technology, 2001, 61, 1303–1310.

    Article  Google Scholar 

  22. Kabir M M, Wang H, Lau K T, Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 2012, 43, 2883–2892.

    Article  Google Scholar 

  23. Mathur V K. Composite materials from local resources. Construction and Building Materials, 2006, 20, 470–477.

    Article  Google Scholar 

  24. Arrakhiz F Z, Malha M, Bouhfid R, Benmoussa K, Qaiss A. Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene. Composites Part B: Engineering, 2013, 47, 35–41.

    Article  Google Scholar 

  25. Murali Mohan Rao K, Ratna Prasad A V, Ranga Babu M N V, Mohan Rao K, Gupta A V S S K S. Tensile properties of elephant grass fiber reinforced polyestercomposite. Journal of Materials Science, 2007, 42, 3266–3272.

    Article  Google Scholar 

  26. Obi Reddy K, Sivamohan Reddy G, Uma Maheswari C, Varada Rajulu A, Madhusudhana Rao K. Structural characterization of coconut tree leaf sheath fiber reinforcement. Journal of Forest Research, 2010, 21, 53–58.

    Article  Google Scholar 

  27. Kiruthika A V, Veluraja K. Experimental studies on the physico-chemical properties of banana fibre from various varieties. Fibers and Polymers, 2009, 10, 193–199.

    Article  Google Scholar 

  28. Mayandi K, Rajini N, Pitchipoo P, Winowlin Jappes J T, Varada Rajulu A. Properties of untreated and chemically treated cissus quadrangularis natural fibers and their composites with polyester as the matrix. Polymer Composites, 2018, 39, 876–886.

    Article  Google Scholar 

  29. Thiruchitrambalam M, Shanmugam D. Influence of pre-treatments on the mechanical properties of palmyra palm leaf stalk fiber-polyester composites. Journal of Reinforced Plastics and Composites, 2012, 31, 1400–1414.

    Article  Google Scholar 

  30. Kalimuthu M, Nagarajan R, Batcha A A, Siengchin S, Anumakonda V R, Ayrilmis N. Mechanical property and morphological analysis of polyester composites reinforced with Cyperus pangorei fibers. Journal of Bionic Engineering, 2019, 16, 164–174.

    Article  Google Scholar 

  31. Pearl I A. Chemistry of Lignin. Marcel Dekker, New York, USA, 1967, 32–58.

    Google Scholar 

  32. Conrad C M. Determination of wax in cotton fiber. A new alcohol extraction method. Industrial and Engineering Chemistry, Analytical Edition, 1944, 16, 745–748.

    Article  Google Scholar 

  33. Reddy N, Yang Y. Characterizing natural cellulose fibers from velvet leaf (Abutilon Theophrasti) stems. Bioresource Technology, 2008, 99, 2449–2454.

    Article  Google Scholar 

  34. Sreenivasan V S, Ravindran D, Manikandan V, Narayanasamy R. Influence of fiber treatments on mechanical properties of short Sansevieria cylindrical/polyester composites. Materials & Design, 2012, 37, 111–121.

    Article  Google Scholar 

  35. Mayandi K, Rajini N, Pitchipoo P, Winowlin Jappes J T, Siva I. Mechanical performance of Cissus quadrangularis/polyester composite. Materials Today Communication, 2015, 4, 222–232.

    Article  Google Scholar 

  36. Sathishkumar T P, Navaneetha K P, Shankar S. Tensile and flex-ural properties of snake grass natural fiber reinforced isophthallic polyester composites. Composites Science and Technology, 2012, 72, 1183–1190.

    Article  Google Scholar 

  37. Mayandi K, Rajini N, Pitchipoo P, Sreenivasan V S, Winowlin Jappes J T, Alavudeen A. A comparative study on characterizations of Cissus quadrangularis and Phoenix reclinata natural fibers. Journal of Reinforced Plastics and Composites, 2015, 34, 269–280.

    Article  Google Scholar 

  38. Mayandi K, Rajini N, Pitchipoo P, Winowlin J J T, Varada Rajulu A. Extraction and characterization of new natural lingo- cellulosic fiber Cyperus pangorei. International Journal of Polymer Analysis and Characterization, 2016, 21, 175–183.

    Article  Google Scholar 

  39. Sathishkumar T P, Navaneetha K P, Shankar S, Rajasekar R, Rajini N. Characterization of natural fiber and composites — A review. Journal of Reinforced Plastics and Composites, 2013, 32, 1457–1476.

    Article  Google Scholar 

  40. Saravanankumar S S, Kumaravel A, Nagarajan T, Ganesha Moorthy I. Effect of chemical treatments on physicochemical properties of Prosopis juliflora fibers. International Journal of Polymer Analysis and Characterization, 2014, 19, 383–390.

    Article  Google Scholar 

  41. Arthanarieswaran V P, Kumaravel A, Saravanakumar S S. Characterization of new natural cellulosic fiber from Acacia leucophloea bark. International Journal of Polymer Analysis and Characterization, 2015, 20, 367–376.

    Article  Google Scholar 

  42. Jayaramudu J, Guduri B R, Varada Rajulu A. Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohydrate Polymers, 2010, 79, 847–851.

    Article  Google Scholar 

  43. Elenga R G, Dirras G F, Goma Maniongui J, Djemia P, Biget M P. On the microstructure and physical properties of untreated raffia textilis fiber. Composites Part A: Applied Science and Manufacturing, 2009, 40, 418–422.

    Article  Google Scholar 

  44. Morvan C, Jauneau A, Flaman A, Millet J, Demarty M. Degradation of flax polysaccharides with purified endopolygalacturonase. Carbohydrate Polymers, 1990, 13, 149–163.

    Article  Google Scholar 

  45. Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensileproperties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 2011, 42, 856–873.

    Article  Google Scholar 

  46. Mwaikambo L Y, Ansell M P. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalisation. Journal of Applied Polymer Science, 2002, 84, 2222–2234.

    Article  Google Scholar 

  47. Rong M Z, Zhang M Q, Liu Y, Yang G C, Zheng H M. The effect of fiber treatment on the mechanical properties of unidirectional sisal reinforced epoxy composites. Composites Science and Technology, 2001, 61, 1437–1447.

    Article  Google Scholar 

  48. Satyanarayana K G, Guimaraes J L, Wypych F. Studies on lingocellulosic fibers of Brazil. Part I: Source production, morphology, properties and applications. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1694–1709.

    Article  Google Scholar 

  49. Silva R V, Spineli D, Bose Filho W W, Claro Neto S, Chierice G O, Tarpani J R. Fracture toughness of natural fibers/castor oil polyurethane composites. Composites Science and Technology, 2006, 66, 1328–1335.

    Article  Google Scholar 

  50. Singha A S, Thakur V K. Mechanical, morphological and thermal properties of pine needle-reinforced polymer composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2008, 58, 21–31.

    Article  Google Scholar 

Download references

Acknowledgment

The authors sincerely appreciate the Center for Advanced Materials, Department of Mechanical Engineering, Cape Institute of Technology, Kalasalingam University for their permission to carry out the preparation and testing of the composite samples. The King Saud University author is grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajini Nagarajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soosai, M., Thankian, C., Thangiah, W.J.J. et al. Characterization of Novel Lignocellulosic Spinifex littoreus Fibers and Their Composites. J Bionic Eng 17, 393–404 (2020). https://doi.org/10.1007/s42235-020-0032-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-020-0032-5

Keywords

Navigation