Skip to main content

Advertisement

Log in

Extensive characterization of novel cellulosic biofiber from leaf sheath of Licuala grandis for biocomposite applications

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Composite industries focus on utilization of natural resources to imbibe sustainability in their products. This investigation details the segregation and characterization of Licuala grandis leaf sheath fibers (LGLSFs) extracted from leaf sheath of Licuala grandis tree an agro-waste for utilization as raw material in composite industries. The characteristics of LGLSF were compared with other competitive natural fibers to ensure its suitability for reinforcement in composite industry. The characterizations include chemical, mechanical, morphological, and thermal methods. The Fourier transform infrared spectroscopy (FTIR) spectrum revealed the existence of functional groups in LGLSF. The surface texture of LGLSF observed through a scanning electron microscope (SEM) ensures its possibility of making better interfacial bonding characteristics with the matrix when reinforced in polymer composites. To support the industry on decision making process, the quantitative metrics such as cellulose content (49.13 wt.%), minimum wax (0.31 wt.%), lesser density (1.24 g/cm3), higher crystallinity index (48%), tensile strength (102–179 MPa), and Young’s modulus (1.3–5.4 GPa) of LGLSF were appraised. The thermal stability up to 223 °C and exothermic and endothermic behavior of LGLSF at higher temperatures were ensured through thermogravimetric (TGA/DTG) and differential scanning calorimetry (DSC) analysis, respectively. The appraised quantitative values, the thermal behavior, and chemical functionality of LGLSF ensure its use as reinforcement in polymer composites employed for low density structural applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

This is an ongoing research work, and hence, the data cannot be shared at this moment.

References

  1. Arul Marcel Moshi A, Ravindran D, SundaraBharathi SR, Padma SR, Indran S, Divya D (2020) Characterization of natural cellulosic fiber extracted from Grewia damine flowering plant’s stem. Int J Biol Macromol 154(1246):1255. https://doi.org/10.1016/j.ijbiomac.2020.07.225

    Article  Google Scholar 

  2. Chakravarthy S, Madhu K, Raju JSN, Md JS (2020) Characterization of novel natural cellulosic fiber extracted from the stem of Cissus vitiginea plant. Int J Biol Macromol 161:1358–1370. https://doi.org/10.1016/j.ijbiomac.2020.07.230

    Article  Google Scholar 

  3. Chakkour M, Ould Moussa M, Khay I, Balli M, Ben Zineb T (2023) Towards widespread properties of cellulosic fibers composites: a comprehensive review. J Reinf Plast Compos 42(5–6):222–263. https://doi.org/10.1177/07316844221112974

    Article  Google Scholar 

  4. Shi Y, Jiang J, Ye H, Sheng Y, Zhou Y, Foong SY, Sonne C, Chong WWF, Lam SS, Xie Y, Li J, Ge S (2023) Transforming municipal cotton waste into a multilayer fibre biocomposite with high strength. Environ Res 218:114967. https://doi.org/10.1016/j.envres.2022.114967

    Article  Google Scholar 

  5. Rajkumar R, Manikandan A, Saravankumar SS (2016) Physicochemical properties of alkali-treated new cellulosic fiber from cotton shell. Int J Polym Anal Charact 21:359–364. https://doi.org/10.1080/1023666X.2016.1160509

    Article  Google Scholar 

  6. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581. https://doi.org/10.1016/j.jclepro.2017.10.101

    Article  Google Scholar 

  7. Siva R, Valarmathi TN, Palanikumar K, Antony VS (2020) Study on a Novel natural cellulosic fiber from Kigelia africana fruit: characterization and analysis. Carbohydr Polym 244:116494. https://doi.org/10.1016/j.carbpol.2020.116494

    Article  Google Scholar 

  8. Madhu P, Sanjay MR, Senthamaraikannan P, Pradeep S, Saravanakumar SS, Yogesha B (2019) A review on synthesis and characterization of commercially available natural fibers: part II. J Nat Fibers 16:25–36. https://doi.org/10.1080/15440478.2017.1379045

    Article  Google Scholar 

  9. Sathishkumar TP, Navaneethakrishnan P, Shankar S, Rajasekar R (2013) Characterization of new cellulose Sansevieria ehrenbergii fibers for polymer Composites. Comp Inter 20:575–593. https://doi.org/10.1080/15685543.2013.816652

    Article  Google Scholar 

  10. Msahli S, Jaouadi M, Sakli F, Drean JY (2015) Study of the mechanical properties of fibers extracted from Tunisian Agave Americana L. J Nat Fibers 12:552–560. https://doi.org/10.1080/15440478.2014.984046

    Article  Google Scholar 

  11. Boopathi L, Sampath PS, Mylsamy K (2012) Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Compos B Eng 43:3044–3052. https://doi.org/10.1016/j.compositesb.2012.05.002

    Article  Google Scholar 

  12. Raju JSN, Depoures MV, Kumaran P (2021) Comprehensive characterization of raw and alkali (NaOH) treated natural fibers from Symphirema involucratum stem. Int J Biol Macromol 186:886–896. https://doi.org/10.1016/j.ijbiomac.2021.07.061

    Article  Google Scholar 

  13. Mohan Prasad M, Sutharsan SM, Ganesan K, Ramesh Babu N, Maridurai T (2022) Role of sugarcane bagasse biogenic silica on cellulosic Opuntia dillenii fibre-reinforced epoxy resin biocomposite: mechanical, thermal and laminar shear strength properties. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-02154-w

    Article  Google Scholar 

  14. Li T, Zhang Y, Jin Y, Bao L, Dong L, Zheng Y, Xia J, Jiang L, Kang Y, Wang J (2023) Thermoplastic and biodegradable sugarcane lignin-based biocomposites prepared via a wholly solvent-free method. J Clean Prod 386:135834. https://doi.org/10.1016/j.jclepro.2022.135834

    Article  Google Scholar 

  15. Zhou S, Xia L, Zhang K, Zhuan F, Wang Y, Zhang Q, Zhai L, Mao Y, Weilin X (2021) Titanium dioxide decorated natural cellulosic Juncus effusus fiber for highly efficient photo-degradation towards dyes. Carbohydr Polym 232:115830. https://doi.org/10.1016/j.carbpol.2020.115830

    Article  Google Scholar 

  16. Khan A, Vijay R, Lenin Singaravelu D, Sanjay MR, Siengchin S, Jawaid M, Alamry KA, Asiri AM (2022) Extraction and characterization of natural fibers from Citrullus lanatus climber. J Nat Fibers 19:621–629. https://doi.org/10.1080/15440478.2020.1758281

    Article  Google Scholar 

  17. Ding L, Han X, Cao L, Chen Y, Ling Z, Han J, He S, Jiang S (2022) Characterization of natural fiber from manau rattan (Calamus manan) as a potential reinforcement for polymer-based composites. J Bioresour Bioprod 7:190–200. https://doi.org/10.1016/j.jobab.2021.11.002

    Article  Google Scholar 

  18. Amutha K, Sudha A, Saravanan D (2022) Characterization of natural fibers extracted from banana inflorescence Bracts. J Nat Fibers 19:872–881. https://doi.org/10.1080/15440478.2020.1764437

    Article  Google Scholar 

  19. Njoku CE, Omotoyinbo JA, Alaneme KK, Daramola MO (2022) Characterization of Urena lobata fibers after alkaline treatment for use in polymer composites. J Nat Fibers 19(2):485–496. https://doi.org/10.1080/15440478.2020.1745127

    Article  Google Scholar 

  20. Cheng D, Weng B, Chen Y, Zhai S, Wang C, Xua R, Guo J, Lv Y, Shi L, Guo Y (2020) Characterization of potential cellulose fiber from Luffa vine: a study on physicochemical and structural properties. Int J Biol Macromol 164:2247–2257. https://doi.org/10.1016/j.ijbiomac.2020.08.098

    Article  Google Scholar 

  21. Poomathi S, Roji SSS (2022) Experimental investigations on Palmyra sprout fiber and biosilica-toughened epoxy bio composite. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02867-6

    Article  Google Scholar 

  22. Sanjay MR, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A (2019) A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohydr Polym 207:108–121. https://doi.org/10.1016/j.carbpol.2018.11.083

    Article  Google Scholar 

  23. Aziz K, El Achaby M, Mamouni R, Saffaj N, Aziz F (2023) A novel hydrogel beads based copper-doped Cerastoderma edule shells@Alginate biocomposite for highly fungicide sorption from aqueous medium. Chemosphere 311(1):136932. https://doi.org/10.1016/j.chemosphere.2022.136932

    Article  Google Scholar 

  24. Moshi AAM, Ravindran D, Bharathi SRSRS, Indran S, Saravanakumar SS, Liu Y (2020) Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. Int J Biol Macromol 142:212–221. https://doi.org/10.1016/j.ijbiomac.2019.09.094

    Article  Google Scholar 

  25. László Lendvai, Maria Omastova, Amar Patnaik, Gábor Dogossy, Tej Singh (2023) Valorization of waste wood flour and rice husk in poly(lactic acid)-based hybrid biocomposites. J Polym Environ. 31:541–551. https://link.springer.com/article/10.1007/s10924-022-02633-9.

  26. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  Google Scholar 

  27. Binoj JS, Edwin Raj R, Sreenivasan VS, Rexin Thusnavis G (2016) Morphological, physical, mechanical, chemical and thermal characterization of sustainable indian areca fruit husk fibers (Areca Catechu L.) as potential alternate for hazardous synthetic fibers. J Bionic Eng 13:156–165. https://doi.org/10.1016/S1672-6529(14)60170-0

    Article  Google Scholar 

  28. Brailson Mansingh B, Binoj JS, Hassan SA, Mariatti M, Siengchin S, Sanjay MR, Bharath KN (2022) Characterization of natural cellulosic fiber from Cocos nucifera peduncle for sustainable biocomposites. J Nat Fibers 19:9373–9383. https://doi.org/10.1080/15440478.2021.1982827

    Article  Google Scholar 

  29. Binoj JS, Jaafar M, Mansingh BB, Bharathiraja G (2023) Extraction and characterization of novel cellulosic biofiber from peduncle of Areca catechu L. biowaste for sustainable biocomposites. Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-04081-4

    Article  Google Scholar 

  30. PalaniyappanSabarinathan VE, Annamalai K, Rajkumar KV, Dhinakaran V (2022) Synthesis and characterization of randomly oriented silane-grafted novel bio-cellulosic fish tail palm fiber–reinforced vinyl ester composite. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02459-4

    Article  Google Scholar 

  31. French AD (2020) Increment in evolution of cellulose crystallinity analysis. Cellulose 27:5445–5448. https://doi.org/10.1007/s10570-020-03172-z

    Article  Google Scholar 

  32. Anand PB, Lakshmikanthan A, Chandrashekarappa MPG, Selvan CP, Pimenov DY, Giasin K (2022) Experimental investigation of effect of fiber length on mechanical, wear, and morphological behavior of silane-treated pineapple leaf fiber reinforced polymer composites. Fibers 10(7):56–69. https://doi.org/10.3390/fib10070056

    Article  Google Scholar 

  33. Ilaiya Perumal C, Sarala R (2020) Characterization of a new natural cellulosic fiber extracted from Derris scandens stem. Int J Biol Macromol 165:2303–2313. https://doi.org/10.1016/j.ijbiomac.2020.10.086

    Article  Google Scholar 

  34. Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  35. Saravanakumar SS, Kumaravel A, Nagarajan T, Sudhakar P, Baskaran R (2013) Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr Polym 92:1928–1933. https://doi.org/10.1016/j.carbpol.2012.11.064

    Article  Google Scholar 

  36. Prabhu P, Jayabalakrishnan D, Balaji V, Bhaskar K, Maridurai T, Arun Prakash VR (2022) Mechanical, tribology, dielectric, thermal conductivity, and water absorption behaviour of Caryota urens woven fibre-reinforced coconut husk biochar toughened wood-plastic composite. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-02177-3

    Article  Google Scholar 

  37. Thooyavan Y, Kumaraswamidhas LA, Edwin Raj R, Binoj JS, BrailsonMansingh B (2022) Failure analysis of basalt bidirectional mat reinforced micro/nano SiC particle filled vinyl ester polymer composites. Eng Fail Anal 136:e106227. https://doi.org/10.1016/j.engfailanal.2022.106227

    Article  Google Scholar 

  38. Khalili H, Bahloul A, Ablouh E-H, Sehaqui H, Kassab Z, Hassani F-Z, El Achaby M (2023) Starch biocomposites based on cellulose microfibers and nanocrystals extracted from alfa fibers (Stipa tenacissima). Int J Biol Macromol 226:345–356. https://doi.org/10.1016/j.ijbiomac.2022.11.313

    Article  Google Scholar 

  39. Arthanarieswaran VP, Kumaravel A, Saravanakumar SS (2015) Physico-chemical properties of alkali treated Acacia leucophloea fibers. Int J Polym Anal Charact 20:704–713. https://doi.org/10.1080/1023666X.2015.1081133

    Article  Google Scholar 

  40. Jayaraj M, Thirumurugan R, Shanmugam D (2022) Investigation of static and dynamic mechanical properties of CPFLSF and PPLSFreinforced polyester hybrid composites. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-03391-3

    Article  Google Scholar 

  41. Mahalingam J (2022) Mechanical, thermal, and water absorption properties of hybrid short coconut tree primary flower leaf stalk fiber/glass fiber-reinforced unsaturated polyester composites for biomedical applications. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02958-4

    Article  Google Scholar 

  42. Ramkumar T, Hariharan K, Selvakumar M, Jayaraj M (2022) Effect of various surface modifications on characterization of new natural cellulosic fiber from coconut tree secondary flower leaf stalk fiber (CSF). J Nat Fibers 19:13362–13375. https://doi.org/10.1080/15440478.2022.2091715

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Antony Sagai Francis Britto: investigation (lead), resources and supporting. Joseph Selvi Binoj: investigation; writing, original draft; reviewing. Bright Brailson Mansingh: writing — original draft. Paulvin Navin Jass: investigation (support), resources and supporting.

Corresponding author

Correspondence to Joseph Selvi Binoj.

Ethics declarations

Ethics approval and consent to participate

All the authors demonstrate that they have adhered to the accepted ethical standards of a genuine research study. Also, individual consent from all the authors was undertaken to publish the data prior submitting to journal.

Consent for publication

Written formal consent ensures that the publisher has the author’s permission to publish research findings.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Biowaste Licuala grandis leaf sheath fibers (LGLSFs) characterized for reinforcement.

• Little wax (0.31 wt.%) and density (1.24 g/cm3) of LGLSFs ensures better bonding.

• Thermal studies (TGA and DSC) confirm thermal stability of LGLSFs to 223°C.

• Uneven and rough surface texture of LGLSFs approves good interfacial bonding features.

• Specific assets attained favors LGLSFs reinforcement for bio-composite applications.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Britto, A.S.F., Binoj, J.S., Mansingh, B.B. et al. Extensive characterization of novel cellulosic biofiber from leaf sheath of Licuala grandis for biocomposite applications. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04598-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04598-8

Keywords

Navigation