Skip to main content
Log in

Effect of the texture geometry on the slippery behavior of liquid-infused nanoporous surfaces

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Slippery liquid-infused porous surfaces (SLIPS) achieve non-wetting properties through surfaces containing pockets of a lubricating liquid rather than of delicate air. Although studies have demonstrated the potential of SLIPS, such as self-cleaning, anti-icing, biomedical devices and non-fouling marine vessels, the effect of multiple phase structures on the motion of drops has not been thoroughly addressed. The present work was focused on the effect of texture geometry on the slipperiness of liquid-infused nanoporous surfaces. We fabricated a set of surfaces with liquid phase and solid phase coexistence using silicone oil as a lubricant and well-ordered nanoporous anodic alumina plates with various pore diameters and interpore distances. The non-wetting state on the fabricated SLIPS is a full Cassie–Baxter state. The results showed that static water contact angles on the SLIPS were mainly dependent on the non-wetting ability of the lubricant retained in the pores. However, a water droplet sliding angle (WSA) was sensitive to the texture geometry and exhibited a strong correlation with the area ratio of the lubricant phase on the SLIPS. A proposed equation in which the cosine of WSA was a negative linear correlation with the critical factor porosity (P) is a good model for the relationship between the WSA and texture geometry. This suggests that the water droplet slippery property can be altered by changing the porosity of the substrate for fabricating specific SLIPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pilat DW, Papadopoulos P, Schäffel D, Vollmer D, Berger R, Butt HJ (2012) Dynamic measurement of the force required to move a liquid drop on a solid surface. Langmuir 28:16812–16820

    Article  CAS  Google Scholar 

  2. Mognetti BM, Yeomans JM (2010) Modeling receding contact lines on superhydrophobic surfaces. Langmuir 26:18162–18168

    Article  CAS  Google Scholar 

  3. Quéré D (2005) Non-sticking drops. Rep Prog Phys 68:2495

    Article  Google Scholar 

  4. Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677

    Article  Google Scholar 

  5. Wong TS, Kang SH, Tang SK, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447

    Article  CAS  Google Scholar 

  6. Boreyko JB, Polizos G, Datskos PG, Sarlesc SA, Collier CP (2014) Air-stable droplet interface bilayers on oil-infused surfaces. Proc Natl Acad Sci USA 111:7588–7593

    Article  CAS  Google Scholar 

  7. Anand S, Rykaczewski K, Subramanyam SB, Beysens D, Varanasi KK (2015) How droplets nucleate and grow on liquids and liquid impregnated surfaces. Soft Matter 11:69–80

    Article  CAS  Google Scholar 

  8. Rykaczewski K, Anand S, Subramanyam SB, Varanasi KK (2013) Mechanism of frost formation on lubricant-impregnated surfaces. Langmuir 29:5230–5238

    Article  CAS  Google Scholar 

  9. Subramanyam SB, Rykaczewski K, Varanasi KK (2013) Ice adhesion on lubricant-impregnated textured surfaces. Langmuir 29:13414–13418

    Article  CAS  Google Scholar 

  10. Butt HJ, Semprebon C, Papadopoulos P, Vollmer D, Brinkmann M, Ciccotti M (2013) Design principles for superamphiphobic surfaces. Soft Matter 9:418–428

    Article  CAS  Google Scholar 

  11. Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56:1–108

    Article  CAS  Google Scholar 

  12. Patankar NA (2011) On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19:1249–1253

    Article  Google Scholar 

  13. Extrand CW (2002) Model for contact angles and hysteresis on rough and ultraphobic surfaces. Langmuir 18:7991–7999

    Article  CAS  Google Scholar 

  14. Deng X, Mammen L, Butt HJ, Vollmer D (2012) Candle soot as a template for a transparent robust superamphiphobic coating. Science 335:67–69

    Article  CAS  Google Scholar 

  15. Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Designing superoleophobic surfaces. Science 318:1618–1622

    Article  CAS  Google Scholar 

  16. Ebert D, Bhushan B (2012) Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles. Langmuir 28:11391–11399

    Article  CAS  Google Scholar 

  17. Wal PVD, Steiner U (2007) Super-hydrophobic surfaces made from Teflon. Soft Matter 3:426–429

    Article  Google Scholar 

  18. Lafuma A, Quéré D (2003) Superhydrophobic states. Nat Mater 2:457–460

    Article  CAS  Google Scholar 

  19. Liu Y, Chen X, Xin JH (2009) Can superhydrophobic surfaces repel hot water? J Mater Chem 19:5602–5611

    Article  CAS  Google Scholar 

  20. Federle W, Riehle M, Curtis AS, Full RJ (2002) An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol 42:1100–1106

    Article  Google Scholar 

  21. Wilson PW, Lu W, Xu H, Kim P, Kreder MJ, Alvarenga J, Aizenberg J (2013) Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Phys Chem Chem Phys 15:581–585

    Article  CAS  Google Scholar 

  22. Kim P, Wong TS, Alvarenga J, Kreder MJ (2012) Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6:6569–6577

    Article  CAS  Google Scholar 

  23. Kim P, Kreder MJ, Alvarenga J, Aizenberg J (2013) Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. Nano Lett 13:1793–1799

    Article  CAS  Google Scholar 

  24. Smith JD, Dhiman R, Varanasi K (2011) Liquid-encapsulating surfaces overcoming the limitations of superhydrophobic surfaces for robust non-wetting and anti-icing surfaces. In: APS division of fluid dynamics meeting abstracts

  25. Lafuma A, Quéré D (2011) Slippery pre-suffused surfaces. Europhys Lett 96:56001

    Article  Google Scholar 

  26. Anand S, Paxson AT, Dhiman R, Smith JD, Varanasi KK (2012) Enhanced condensation on lubricant impregnated nanotextured surfaces. ACS Nano 6:10122–10129

    Article  CAS  Google Scholar 

  27. Smith JD, Dhiman R, Anand S, Reza-Garduno E, Cohen RE, McKinley GH, Varanasi KK (2013) Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9:1772–1780

    Article  CAS  Google Scholar 

  28. Li J, Kleintschek T, Rieder A, Cheng Y, Baumbach T, Obst U, Schwartz T, Levkin PA (2013) Hydrophobic liquid-infused porous polymer surfaces for antibacterial applications. ACS Appl Mater Interfaces 5:6704–6711

    Article  CAS  Google Scholar 

  29. Zhu L, Xue J, Wang Y, Chen Q, Ding J, Wang Q (2013) Ice-phobic coatings based on silicon oil infused polydimethylsiloxane. Appl Mater Interfaces 5:4053–4062

    Article  CAS  Google Scholar 

  30. Dubal DP, Lee SH, Kim JG, Kim WB, Lokhande CD (2012) Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem 22:3044–3052

    Article  CAS  Google Scholar 

  31. Xiao L, Li J, Mieszkin S, Di Fino A, Clare AS, Callow ME, Callow JA, Grunze M, Rosenhahn A, Levkin PA (2013) Slippery liquid-infused porous surfaces showing marine antibiofouling properties. ACS Appl Mater Interfaces 5:10074–10080

    Article  CAS  Google Scholar 

  32. Epstein AK, Wong TS, Belisle RA, Boggs EM, Aizenberg J (2012) Liquid-infused structured surfaces with exceptional anti-biofouling performance. Pro Natl Acad Sci 109:13182–13187

    Article  CAS  Google Scholar 

  33. Sunny S, Vogel N, Howell C, Vu TL, Aizenberg J (2014) Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition. Adv Funct Mater 24:6658–6667

    Article  CAS  Google Scholar 

  34. Dai X, Stogin BB, Yang S, Wong TS (2015) Slippery Wenzel state. ACS Nano 9:9260–9267

    Article  CAS  Google Scholar 

  35. Subramanyam SB, Azimi G, Varanasi KK (2014) Designing lubricant-impregnated textured surfaces to resist scale formation. Adv Mater Interfaces 1300068:1–6

    Google Scholar 

  36. Zhang P, Liu H, Meng J, Yang G, Liu X, Wang S, Jiang L (2014) Grooved organogel surfaces towards anisotropic sliding of water droplets. Adv Mater 26:3131–3135

    Article  CAS  Google Scholar 

  37. Yao X, Dunn SS, Kim P, Duffy M, Alvarenga J, Aizenberg J (2014) Fluorogel elastomers with tunable transparency, elasticity, shape-memory, and antifouling properties. Angew Chem Int Ed Engl 53:4418–4422

    Article  CAS  Google Scholar 

  38. Jacquemin J, Husson P, Padua AAH, Majer V (2006) Density and viscosity of several pure and water-saturated ionic liquids. Green Chem 8:172–180

    Article  CAS  Google Scholar 

  39. Charpentier TV, Neville A, Baudin S, Smith MJ, Euvrard M, Bell A, Wang C, Barker R (2015) Liquid infused porous surfaces for mineral fouling mitigation. J Colloid Interface Sci 444:81–86

    Article  CAS  Google Scholar 

  40. Miranda DF, Urata C, Masheder B, Dunderdale GJ, Yagihashi M, Hozumi A (2014) Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity. APL Mater 2:644

    Article  Google Scholar 

  41. Okada I, Shiratori S (2014) High-transparency, self-standable gel-SLIPS fabricated by a facile nanoscale phase separation. ACS Appl Mater Interfaces 6:1502–1508

    Article  CAS  Google Scholar 

  42. Norek M, Krasiński A (2015) Controlling of water wettability by structural and chemical modification of porous anodic alumina (PAA): towards super-hydrophobic surfaces. Surf Coat Technol 276:464–470

    Article  CAS  Google Scholar 

  43. Ran C, Ding G, Liu W, Deng Y, Hou W (2008) Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure. Langmuir 24:9952–9955

    Article  CAS  Google Scholar 

  44. Yang J, Wang J, Wang CW, He X, Li Y, Chen JB, Zhou F (2014) Intermediate wetting states on nanoporous structures of anodic aluminum oxide surfaces. Thin Solid Films 562:353–360

    Article  CAS  Google Scholar 

  45. Leese H, Bhurtun V, Lee KP, Mattia D (2013) Wetting behaviour of hydrophilic and hydrophobic nanostructured porous anodic alumina. Colloids Surf A Physicochem Eng Asp 420:53–58

    Article  CAS  Google Scholar 

  46. Buijnsters JG, Zhong R, Tsyntsaru N, Celis JP (2013) Surface wettability of macroporous anodized aluminum oxide. ACS Appl Mater Interfaces 5:3224–3233

    Article  CAS  Google Scholar 

  47. Lee W, Park BG, Kim DH, Ahn DJ, Park Y, Lee SH, Lee KB (2010) Nanostructure-dependent water-droplet adhesiveness change in superhydrophobic anodic aluminum oxide surfaces: from highly adhesive to self-cleanable. Langmuir 26(3):1412–1415

    Article  CAS  Google Scholar 

  48. Kajiya T, Wooh S, Lee Y, Char K, Vollmera D, Butt HJ (2016) Cylindrical chains of water drops condensing on microstructured lubricant-infused surfaces. Soft Matter 12:9377–9382

    Article  CAS  Google Scholar 

  49. Sirait KT, Salama, Suwarno (1999) Surface hydrophobicity of silicone rubber under natural tropical conditions. In: 11th International symposium on high-voltage engergy (ISH 99), vol 4, pp 38–41

  50. Schellenberger F, Xie J, Encinas N, Hardy A, Klapper M, Papadopoulos P, Butt HJ, Vollmer D (2015) Direct observation of drops on slippery lubricant-infused surfaces. Soft Matter 11:7617–7626

    Article  CAS  Google Scholar 

  51. Roy PK, Pant R, Nagarajan AK, Khare K (2016) Mechanically tunable slippery behavior on soft poly(dimethylsiloxane)-based anisotropic wrinkles infused with lubricating fluid. Langmuir 32:5738–5743

    Article  CAS  Google Scholar 

  52. Park BG, Lee W, Kim JS, Lee KB (2010) Superhydrophobic fabrication of anodic aluminum oxide with durable and pitch-controlled nanostructure. Colloids Surf A Physicochem Eng Asp 370:15–19

    Article  CAS  Google Scholar 

  53. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  54. Wenzel TN (1949) Surface roughness and contact angle. J Phys Chem 53(9):1466–1467

    Article  CAS  Google Scholar 

  55. Shirtcliffe NJ, McHale G, Newton MI, Perry CC (2005) Wetting and wetting transitions on copper-based super-hydrophobic surfaces. Langmuir 21:937–943

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of Natural Science Foundation of Shandong Province (ZR2015BM009), China; Shandong Province Science and Technology Development Project (2014GGX102030), China; Major Projects of Independent Innovation in Shandong Province (2014ZZCX01106), China; and Weifang Yuandu Industrial Leader Talent Project (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzeng Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Zhu, H., Tu, Z. et al. Effect of the texture geometry on the slippery behavior of liquid-infused nanoporous surfaces. J Mater Sci 54, 2729–2739 (2019). https://doi.org/10.1007/s10853-018-2972-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2972-2

Keywords

Navigation