Skip to main content
Log in

High-performance supercapacitor based on self-heteroatom-doped porous carbon electrodes fabricated from Mikania micrantha

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Applications, economic advantage, and effective waste management have sparked much interest in porous carbon compounds synthesized from renewable and biowaste resources. Self-heteroatom-doped carbon compounds have recently been made using various biological precursors. This study investigates the ease of preparing biomass-derived porous carbon (BPC) matrices from raw and verdant Mikania micrantha leaves using a direct activation and pyrolysis procedure. With the aid of preactivation and pyrolysis, BPC materials can be synthesized with a high surface area of 850.62 m2 g−1 and total pore volume of 0.85 cm3 g−1. Raman spectra reveal the successful creation of pores and enhanced structural disorder following carbonization account by achieving higher intensity ratio of the D band to the G band (ID/IG) of 0.97. At a current density of 1 A/g, the BPC materials MM-700 exhibit a specific capacitance of 393 F/g. Interestingly, the MM-700 BPC materials have a greater capacitive contribution to charge accumulation during the electrochemical reactions. The BPC material MM-700 solid-state device manufactured with a PVA-H2SO4 gel electrolyte has a specific capacitance of 119 F/g at 1 A/g current density and a power density of 13.284 kW/kg at 30 A/g current density. Even at a high current density of 30 A/g, the synthesized porous carbon materials retain a high specific capacitance. Moreover, the MM-700 BPC material exhibits outstanding stability in both three- and two-electrode systems in strong acidic electrolyte.

Graphical abstract

Porous carbon nanosheets are synthesized and evaluated for their potential as an electro-active material for use in high-performance supercapacitors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Guan BY, Yu L, Lou XW (2016) Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly. J Am Chem Soc 138:11306–11311. https://doi.org/10.1021/jacs.6b06558

    Article  CAS  PubMed  Google Scholar 

  2. Lin Z, Li X, Zhang H, Bin Xu B, Wasnik P, Li H, Singh MV, Ma Y, Li T, Guo Z (2023) Research progress of MXenes and layered double hydroxides for supercapacitors. Inorg Chem Front 10:4358–4392. https://doi.org/10.1039/d3qi00819c

    Article  CAS  Google Scholar 

  3. Zhang C, Shen K, Li B, Li S, Yang S (2018) Continuously 3D printed quantum dot-based electrodes for lithium storage with ultrahigh capacities. J Mater Chem A Mater 6:19960–19966. https://doi.org/10.1039/c8ta08559e

    Article  CAS  Google Scholar 

  4. Hao L, Ning J, Luo B, Wang B, Zhang Y, Tang Z, Yang J, Thomas A, Zhi L (2015) Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. J Am Chem Soc 137:219–225. https://doi.org/10.1021/ja508693y

    Article  CAS  PubMed  Google Scholar 

  5. Xu H, Wu C, Wei X, Gao S (2018) Hierarchically porous carbon materials with controllable proportion of micropore area by dual-activator synthesis for high-performance supercapacitors. J Mater Chem A Mater 6:15340–15347. https://doi.org/10.1039/c8ta04777d

    Article  CAS  Google Scholar 

  6. Su H, Zhang H, Liu F, Chun F, Zhang B, Chu X, Huang H, Deng W, Gu B, Zhang H, Zheng X, Zhu M, Yang W (2017) High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes. Chem Eng J 322:73–81. https://doi.org/10.1016/j.cej.2017.04.012

    Article  CAS  Google Scholar 

  7. Yang W, Yang W, Ding F, Sang L, Ma Z, Shao G (2017) Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate supercapacitors. Carbon N Y 111:419–427. https://doi.org/10.1016/j.carbon.2016.10.025

    Article  CAS  Google Scholar 

  8. Fechler N, Fellinger TP, Antonietti M (2013) “salt templating”: a simple and sustainable pathway toward highly porous functional carbons from ionic liquids. Adv Mater 25:75–79. https://doi.org/10.1002/adma.201203422

    Article  CAS  PubMed  Google Scholar 

  9. Borchardt L, Oschatz M, Kaskel S (2016) Carbon materials for lithium sulfur batteries - ten critical questions. Chem Eur J 22:7324–7351. https://doi.org/10.1002/chem.201600040

    Article  CAS  PubMed  Google Scholar 

  10. Gu W, Yushin G (2014) Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene, Wiley Interdiscip Rev. Energy Environ 3:424–473. https://doi.org/10.1002/wene.102

    Article  CAS  Google Scholar 

  11. Kim Y, Cho CY, Kang JH, Cho YS, Moon JH (2012) Synthesis of porous carbon balls from spherical colloidal crystal templates. Langmuir 28:10543–10550. https://doi.org/10.1021/la3021468

    Article  CAS  PubMed  Google Scholar 

  12. Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A Mater 1:6462–6470. https://doi.org/10.1039/c3ta10897j

    Article  CAS  Google Scholar 

  13. Qiao Y, He J, Zhou Y, Wu S, Li X, Jiang G, Jiang G, Demir M, Ma P (2023) Flexible all-solid-state asymmetric supercapacitors based on PPy-decorated SrFeO 3−δ perovskites on carbon cloth. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.3c10189

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xu RH, Ma PP, Liu GF, Qiao Y, Hu RY, Liu LY, Demir M, Jiang GH (2023) Dual-phase coexistence design and advanced electrochemical performance of Cu2MoS4 electrode materials for supercapacitor application. Energy Fuels 37:6158–6167. https://doi.org/10.1021/acs.energyfuels.2c04273

    Article  CAS  Google Scholar 

  15. Hu RY, Liu LY, He JH, Zhou Y, Wu SB, Zheng MX, Demir M, Ma PP (2023) Preparation and electrochemical properties of bimetallic carbide Fe3Mo3C/Mo2C@carbon nanotubes as negative electrode material for supercapacitor. J Energy Storage 72:108656. https://doi.org/10.1016/j.est.2023.108656

    Article  Google Scholar 

  16. Liu L, Liu G, Wu S, He J, Zhou Y, Demir M, Huang R, Ruan Z, Jiang G, Ma P (2023) Fe-substituted SrCoO3 perovskites as electrode materials for wide temperature-tolerant supercapacitors. Ceram Int 50:1970–1980. https://doi.org/10.1016/j.ceramint.2023.10.301

    Article  CAS  Google Scholar 

  17. Jiao Z, Chen Y, Du M, Demir M, Yan F, Zhang Y, Wang C, Gu M, Zhang X, Zou J (2023) In-situ formation of morphology-controlled cobalt vanadate on CoO urchin-like microspheres as asymmetric supercapacitor electrode. J Alloys Compd 958:170489. https://doi.org/10.1016/j.jallcom.2023.170489

    Article  CAS  Google Scholar 

  18. Yao F, Pham DT, Lee YH (2015) Carbon-based materials for lithium-ion batteries, electrochemical capacitors, and their hybrid devices. Chemsuschem 8:2284–2311. https://doi.org/10.1002/cssc.201403490

    Article  CAS  PubMed  Google Scholar 

  19. Zhong Y, Liu D, Yang Q, Qu Y, Yu C, Yan K, Xie P, Qi X, Guo Z, Toktarbay Z (2023) Boosting microwave absorption performance of bio-gel derived Co/C nanocomposites. Eng Sci 1–12. https://doi.org/10.30919/es988

  20. Vijeata A, Chaudhary GR, Umar A, Chaudhary S (2021) Distinctive solvatochromic response of fluorescent carbon dots derived from different components of aegle marmelos plant. Eng Sci 15:197–209. https://doi.org/10.30919/es8e512

  21. Thota SP, Bag PP, Vadlani PV, Belliraj SK (2022) Plant biomass derived multidimensional nanostructured materials: a green alternative for energy storage. Eng Sci 18:31–58. https://doi.org/10.30919/es8d664

  22. Kang F, Jiang X, Wang Y, Ren J, Xu BB, Gao G, Huang Z, Guo Z (2023) Electron-rich biochar enhanced Z-scheme heterojunctioned bismuth tungstate/bismuth oxyiodide removing tetracycline. Inorg Chem Front 6045–6057. https://doi.org/10.1039/d3qi01283b

  23. Cai J, Xi S, Zhang C, Li X, Helal MH, El-Bahy ZM, Ibrahim MM, Zhu H, Singh MV, Wasnik P, Xu BB (2023) Overview of biomass valorization: case study of nanocarbons, biofuels and their derivatives. J Agric Food Res 14. https://doi.org/10.1016/j.jafr.2023.100714

  24. Ruan J, Chang Z, Rong H, Alomar TS, Zhu D, AlMasoud N, Liao Y, Zhao R, Zhao X, Li Y, Xu BB (2023) High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon NY 213:118208. https://doi.org/10.1016/j.carbon.2023.118208

  25. Guo J, Xi S, Zhang Y, Li X, Chen Z, Xie J, Zhao X, Liu Z, Colorado H, El-Bahy ZM, Abdul W (2023) Biomass based carbon materials for electromagnetic wave absorption: a mini-review. ES Food and Agroforestry 13:1–10. https://doi.org/10.30919/esfaf900

  26. Ferrero GA, Fuertes AB, Sevilla M (2015) N- porous carbon capsules with tunable porosity for high-performance supercapacitors. J Mater Chem A Mater 3:2914–2923. https://doi.org/10.1039/c4ta06022a

    Article  CAS  Google Scholar 

  27. Almeida VC, Silva R, Acerce M, Junior OP, Cazetta AL, Martins AC, Huang X, Chhowalla M, Asefa T (2014) N-doped ordered mesoporous carbons with improved charge storage capacity by tailoring N-dopant density with solvent-assisted synthesis. J Mater Chem A Mater 2:15181–15190. https://doi.org/10.1039/c4ta02236j

    Article  CAS  Google Scholar 

  28. Jalalah M, Sasmal A, Nayak AK, Harraz FA (2023) Rapid, external acid-free synthesis of Bi2WO6 nanocomposite for efficient supercapacitor application. J Taiwan Inst Chem Eng 143:104697

    Article  CAS  Google Scholar 

  29. Jalalah M, Sivasubramaniam SS, Aljafari B, Irfan M, Almasabi SS, Alsuwian T, Khazi MI, Nayak AK, Harraz FA (2022) Biowaste assisted preparation of self-nitrogen-doped nanoflakes carbon framework for highly efficient solid-state supercapacitor application. J Energy Storage 54:105210

    Article  Google Scholar 

  30. Li Y, Li J, Li Y, Wang XX, Cao AC (2013) Antimicrobial constituents of the leaves of Mikania micrantha H. B. K. PLoS One 8. https://doi.org/10.1371/journal.pone.0076725

  31. Gong Y, Li D, Luo C, Fu Q, Pan C (2017) Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem 19:4132–4140. https://doi.org/10.1039/c7gc01681f

    Article  CAS  Google Scholar 

  32. Kang X, Zhu H, Wang C, Sun K, Yin J (2018) Biomass derived hierarchically porous and heteroatom-doped carbons for supercapacitors. J Colloid Interface Sci 509:369–383. https://doi.org/10.1016/j.jcis.2017.09.013

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Jalalah M, Rudra S, Aljafari B, Irfan M, Almasabi SS, Alsuwian T, Patil AA, Nayak AK, Harraz FA (2022) Novel porous heteroatom-doped biomass activated carbon nanoflakes for efficient solid-state symmetric supercapacitor devices. J Taiwan Inst Chem Eng 132:104148. https://doi.org/10.1016/j.jtice.2021.11.015

    Article  CAS  Google Scholar 

  34. Jalalah M, Rudra S, Aljafari B, Irfan M, Almasabi SS, Alsuwian T, Patil AA, Nayak AK, Harraz FA (2022) Novel porous heteroatom-doped biomass activated carbon nanoflakes for efficient solid-state symmetric supercapacitor devices. J Taiwan Inst Chem Eng 132. https://doi.org/10.1016/j.jtice.2021.11.015

  35. Rudra S, Deka N, Nayak AK, Pradhan M, Dutta GK (2022) Facile hydrothermal synthesis of Au-Mn3O4 decorated graphene oxide nanocomposites for solid-state supercapacitor. J Energy Storage 50:104615. https://doi.org/10.1016/j.est.2022.104615

    Article  Google Scholar 

  36. Jalalah M, Rudra S, Aljafari B, Irfan M, Almasabi SS, Alsuwian T, Khazi MI, Nayak AK, Harraz FA (2022) Sustainable synthesis of heteroatom-doped porous carbon skeleton from Acacia auriculiformis bark for high-performance symmetric supercapacitor device. Electrochim Acta 414:140205. https://doi.org/10.1016/j.electacta.2022.140205

    Article  CAS  Google Scholar 

  37. Dastan D, Chaure N, Kartha M (2017) Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J Mater Sci Mater Electron 28:7784–7796. https://doi.org/10.1007/s10854-017-6474-9

    Article  CAS  Google Scholar 

  38. Zhang W, Zhu X, Liang L, Yin P, Xie P, Dastan D, Sun K, Fan R, Shi Z (2021) Significantly enhanced dielectric permittivity and low loss in epoxy composites incorporating 3d W-WO3/BaTiO3 foams. J Mater Sci 56:4254–4265. https://doi.org/10.1007/s10853-020-05536-z

    Article  CAS  ADS  Google Scholar 

  39. Monsef R, Ghiyasiyan-Arani M, Salavati-Niasari M (2019) Utilizing of neodymium vanadate nanoparticles as an efficient catalyst to boost the photocatalytic water purification. J Environ Manage 230:266–281. https://doi.org/10.1016/j.jenvman.2018.09.080

    Article  CAS  PubMed  Google Scholar 

  40. Salavati-Niasari M, Fereshteh Z, Davar F (2009) Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor. Polyhedron 28:126–130. https://doi.org/10.1016/j.poly.2008.09.027

    Article  CAS  Google Scholar 

  41. Asadzadeh M, Tajabadi F, Dastan D, Sangpour P, Shi Z, Taghavinia N (2021) Facile deposition of porous fluorine doped tin oxide by Dr. Blade method for capacitive applications, Ceram Int 47:5487–5494. https://doi.org/10.1016/j.ceramint.2020.10.131

    Article  CAS  Google Scholar 

  42. Yang J, Zhu X, Wang H, Wang X, Hao C, Fan R, Dastan D, Shi Z (2020) Achieving excellent dielectric performance in polymer composites with ultralow filler loadings via constructing hollow-structured filler frameworks. Compos Part A Appl Sci Manuf 131:105814. https://doi.org/10.1016/j.compositesa.2020.105814

    Article  CAS  Google Scholar 

  43. Arun Kumar S, Rudra S, Thamizharasan G, Pradhan M, Rani B, Sahu NK, Nayak AK (2022) Crystal structure controlled synthesis of tin oxide nanoparticles for enhanced energy storage activity under neutral electrolyte. J Mater Sci Mater Electron 33:13668–13683. https://doi.org/10.1007/s10854-022-08302-w

  44. Rudra S, Thamizharasan JKG, Pradhan M, Rani B, Sahu NK, Nayak AK (2022) Fabrication of Mn3O4-WO3 nanoparticles based nanocomposites symmetric supercapacitor device for enhanced energy storage performance under neutral electrolyte. Electrochim Acta 406:139870. https://doi.org/10.1016/j.electacta.2022.139870

  45. Jerigová M, Odziomek M, López-Salas N (2022) “We Are Here!” oxygen functional groups in carbons for electrochemical applications. ACS Omega 7:11544–11554. https://doi.org/10.1021/acsomega.2c00639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rudra S, Chakraborty R, Maji PK, Koley S, Nayak AK, Paul D, Pradhan M (2019) Intercalation pseudocapacitance in chemically stable Au-α-Fe2O3-Mn3O4 composite nanorod: towards highly efficient solid-state symmetric supercapacitor device. Electrochim Acta 324:134865. https://doi.org/10.1016/j.electacta.2019.134865

    Article  CAS  Google Scholar 

  47. Guo F, Jiang X, Jia X, Liang S, Qian L, Rao Z (2019) Synthesis of biomass carbon electrode materials by bimetallic activation for the application in supercapacitors. J Electroanal Chem 844:105–115. https://doi.org/10.1016/j.jelechem.2019.05.004

    Article  CAS  Google Scholar 

  48. Song Z, Duan H, Li L, Zhu D, Cao T, Lv Y, Xiong W, Wang Z, Liu M, Gan L (2019) High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte. J Chem Eng 372:1216–1225. https://doi.org/10.1016/j.cej.2019.05.019

  49. Chen Y, Hu R, Qi J, Sui Y, He Y, Meng Q, Wei F, Ren Y (2019) Sustainable synthesis of N/S-doped porous carbon sheets derived from waste newspaper for high-performance asymmetric supercapacitor. Mater Res Express 6. https://doi.org/10.1088/2053-1591/ab2d97

  50. Gao Y, Zhang Y, Li A, Zhang L (2018) Facile synthesis of high-surface area mesoporous biochar for energy storage via in-situ template strategy. Mater Lett 230:183–186. https://doi.org/10.1016/j.matlet.2018.07.106

    Article  CAS  Google Scholar 

  51. Zhou C, Zhang Y, Li Y, Liu J (2013) Cheng Zhou, Yangwei Zhang, Yuanyuan Li and Jinping Liu. Nano Lett 13:2078–2085

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Usha Rani M, Nanaji K, Rao TN, Deshpande AS (2020) Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors. J Power Sources 471:228387. https://doi.org/10.1016/j.jpowsour.2020.228387

  53. Zhu L, Shen F, Smith RL, Yan L, Li L, Qi X (2017) Black liquor-derived porous carbons from rice straw for high-performance supercapacitors. Chem Eng J 316:770–777. https://doi.org/10.1016/j.cej.2017.02.034

    Article  CAS  Google Scholar 

  54. Qin C, Wang S, Wang Z, Ji K, Wang S, Zeng X, Jiang X, Liu G (2021) Hierarchical porous carbon derived from Gardenia jasminoides Ellis flowers for high performance supercapacitor. J Energy Storage 33:102061. https://doi.org/10.1016/j.est.2020.102061

    Article  Google Scholar 

  55. Zhang F, Xiao X, Gandla D, Liu Z, Tan DQ, Ein-Eli Y (2022) Bio-derived carbon with tailored hierarchical pore structures and ultra-high specific surface area for superior and advanced supercapacitors. Nanomaterials 12. https://doi.org/10.3390/nano12010027

Download references

Funding

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work, under the Distinguished Research Program grant code (NU/DRP/SERC/12/7).

Author information

Authors and Affiliations

Authors

Contributions

Mohammed Jalalah, HyukSu Han, Arpan Kumar Nayak, and Farid A. Harraz initiated the study, performed the extensive experiments related to the growth of the samples and preparation of devices, and wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mohammed Jalalah, Arpan Kumar Nayak or Farid A. Harraz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7042 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalalah, M., Han, H., Nayak, A.K. et al. High-performance supercapacitor based on self-heteroatom-doped porous carbon electrodes fabricated from Mikania micrantha. Adv Compos Hybrid Mater 7, 20 (2024). https://doi.org/10.1007/s42114-024-00833-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00833-6

Keywords

Navigation