Skip to main content

Advertisement

Log in

Heteroatoms (O, N)-doped porous carbon derived from bamboo shoots shells for high performance supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Activated carbon derived from plant wastes is attractive for the fabrication of low cost and high performance electrochemical energy storage devices. The heteroatoms (O, N)-doped porous carbon (KAC-700) is fabricated from bamboo shoots shells via KOH activation. The symmetric supercapacitor based on KAC-700 has gravimetric and volumetric capacitance of 223.21 F g−1 and 167.63 F cm−3, respectively, at current density of 1 A g−1 in 1 M H2SO4 electrolyte. This supercapacitor also delivers a high energy density of 13.15 Wh kg−1 at power density of 546.60 W kg−1 in 1 M Na2SO4 electrolyte, as well as high capacitance retention rate of 93.62% after 4000 cycles at 5 A g−1. Compared with graphene, carbon nanotubes and other expensive carbon material, this activated carbon has a bright future due to its low cost and easy fabrication process as electrode material for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q. Wang, J. Yan, J.Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729–762 (2016)

    Article  CAS  Google Scholar 

  2. L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, B. Wang, Metal–organic frameworks for energy storage: batteries and supercapacitors. Coord. Chem. Rev. 307, 361–381 (2016)

    Article  CAS  Google Scholar 

  3. C. Long, D. Qi, T. Wei, J. Yan, L. Jiang, Z. Fan, Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 24, 3953–3961 (2014)

    Article  CAS  Google Scholar 

  4. H. Ma, D. Kong, Y. Xu, X. Xie, Y. Tao, Z. Xiao, W. Lv, H.D. Jang, J. Huang, Q.H. Yang, Disassembly-reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 13, 1701026 (2017)

    Article  Google Scholar 

  5. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Asymmetric supercapacitor electrodes and devices. Adv. Mater 29, 1605336 (2017)

    Article  Google Scholar 

  6. M. Yu, Z. Wang, Y. Han, Y. Han, Y. Tong, X. Lu, S. Yang, Recent progress in the development of anodes for asymmetric supercapacitors. J. Mater. Chem. A 4, 4634–4658 (2016)

    Article  CAS  Google Scholar 

  7. J.G. Wang, F. Kang, B. Wei, Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog. Mater. Sci. 74, 51–124 (2015)

    Article  CAS  Google Scholar 

  8. J.G. Wang, H. Liu, H. Liu, W. Hua, M. Shao, Interfacial constructing flexible V2O5@polypyrrole core-shell nanowire membrane with superior supercapacitive performance. ACS Appl. Mater. Interfaces 10, 18816–18823 (2018)

    Article  CAS  Google Scholar 

  9. J.G. Wang, Z. Zhang, X. Zhang, X. Yin, X. Li, X. Liu, F. Kang, B. Wei, Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 39, 647–653 (2017)

    Article  Google Scholar 

  10. M. Hughes, G.Z. Chen, M.S. Shaffer, D.J. Fray, A.H. Windle, Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem. Mater. 14, 1610–1613 (2002)

    Article  CAS  Google Scholar 

  11. Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4, 1963–1970 (2010)

    Article  CAS  Google Scholar 

  12. K. Sun, S. Yu, Z. Hu, Z. Li, G. Lei, Q. Xiao, Y. Ding, Oxygen-containing hierarchically porous carbon materials derived from wild jujube pit for high-performance supercapacitor. Electrochim. Acta 231, 417–428 (2017)

    Article  CAS  Google Scholar 

  13. L. Zhang, R. Chen, K.N. Hui, K.S. Hui, H. Lee, Hierarchical ultrathin NiAl layered double hydroxide nanosheet arrays on carbon nanotube paper as advanced hybrid electrode for high performance hybrid capacitors. Chem. Eng. J. 325, 554–563 (2017)

    Article  CAS  Google Scholar 

  14. H. Su, H. Zhang, F. Liu, F. Chun, B. Zhang, X. Chu, H. Huang, W. Deng, B. Gu, H. Zhang, X. Zheng, M. Zhu, W. Yang, High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes. Chem. Eng. J. 322, 73–81 (2017)

    Article  CAS  Google Scholar 

  15. P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Crunden, R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 3, 1238–1251 (2010)

    Article  CAS  Google Scholar 

  16. M. Guo, J. Guo, D. Jia, H. Zhao, Z. Sun, X. Song, Y. Li, Coal derived porous carbon fibers with tunable internal channels for flexible electrodes and organic matter absorption. J. Mater. Chem. A 3, 21178–21184 (2015)

    Article  CAS  Google Scholar 

  17. K.H. Iessa, Y. Zhang, G. Zhang, F. Xiao, S. Wang, Conductive porous sponge-like ionic liquid-graphene assembly decorated with nanosized polyaniline as active electrode material for supercapacitor. J. Power Sources 302, 92–97 (2016)

    Article  Google Scholar 

  18. G.A. Ferrero, A.B. Fuertes, M. Sevilla, From soybean residue to advanced supercapacitors. Sci. Rep. 5, 16618–16631 (2015)

    Article  CAS  Google Scholar 

  19. Q. Liang, L. Ye, Z.H. Huang, Q. Xu, Y. Bai, F. Kang, Q. Yang, A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 6, 13831–13837 (2014)

    Article  CAS  Google Scholar 

  20. E.M. Lotfabad, J. Ding, K. Cui, A. Konhandehghan, W.P. Kalisvaart, M. Hazelton, D. Mitlin, High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8, 7115–71129 (2014)

    Article  CAS  Google Scholar 

  21. Y. Zhang, S. Liu, X. Zheng, X. Wang, Y. Xu, H. Tang, F. Kang, Q.H. Yang, J. Luo, Biomass organs control the porosity of their pyrolyzed carbon. Adv. Funct. Mater. 27, 1604687 (2017)

    Article  Google Scholar 

  22. R. Wang, P. Wang, X. Yan, J. Lang, C. Peng, Q. Xue, Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl. Mater. Interfaces 4, 5800 (2012)

    Article  CAS  Google Scholar 

  23. K. Wang, Y. Song, R. Yan, N. Zhao, X. Tian, X. Li, Q. Guo, Z. Liu, High capacitive performance of hollow activated carbon fibers derived from willow catkins. Appl. Surf. Sci. 394, 569–577 (2017)

    Article  CAS  Google Scholar 

  24. X. Liu, Y. Zhou, W. Zhou, L. Li, S. Huang, S. Chen, Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction. Nanoscale 7, 6136–6142 (2015)

    Article  CAS  Google Scholar 

  25. T.E. Rufford, D. Hulicova-Jurcakova, Z. Zhu, G.Q. Lu, Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem. Commun. 10, 1594–1597 (2008)

    Article  CAS  Google Scholar 

  26. D. Shan, J. Yang, W. Liu, J. Yan, Z. Fan, Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. J. Mater. Chem. A 4, 13589–13602 (2016)

    Article  CAS  Google Scholar 

  27. P. Cheng, S. Gao, P. Zang, X. Yang, Y. Bai, H. Xu, Z. Liu, Z. Lei, Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93, 315–324 (2015)

    Article  CAS  Google Scholar 

  28. D. Wang, S. Liu, G. Fang, G. Geng, J. Ma, From trash to treasure: direct transformation of onion husks into three-dimensional interconnected porous carbon frameworks for high-performance supercapacitors in organic electrolyte. Electrochim. Acta 216, 405–411 (2016)

    Article  CAS  Google Scholar 

  29. M.A. Islam, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed, Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal. Ecotoxicol. Environ. Saf. 138, 279–285 (2017)

    Article  CAS  Google Scholar 

  30. Y. Zhang, X. Liu, S. Wang, L. Li, S. Dou, Bio-nanotechnology in high-performance supercapacitors. Adv. Energy Mater 7, 1700592 (2017)

    Article  Google Scholar 

  31. C. Su, C. Pei, B. Wu, J. Qian, Y. Tan, Highly doped carbon nanobelts with ultrahigh nitrogen content as high-performance supercapacitor materials. Small 13, 1700834–1700846 (2017)

    Article  Google Scholar 

  32. K.S.W. Sing, D.H. Everett, R. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  33. L. Sun, C. Tian, M. Li, X. Meng, L. Wang, R. Wang, J. Yin, H. Fu, From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A 1, 6462–6470 (2013)

    Article  CAS  Google Scholar 

  34. Y.C. Liu, B.B. Huang, X.X. Lin, Z.L. Xie, Biomass-derived hierarchical porous carbons: boosting the energy density of supercapacitors via an ionothermal approach. J. Mater. Chem. A 5, 13009–13018 (2017)

    Article  CAS  Google Scholar 

  35. O. Barbieri, M. Hahn, A. Herzog, R. Kötz, Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43, 1303–1310 (2005)

    Article  CAS  Google Scholar 

  36. W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 7, 379–386 (2014)

    Article  CAS  Google Scholar 

  37. P.S. Yang, L. Ma, M.Y. Gan, Y. Lei, X.L. Zhang, M. Jin, G. Fu, Preparation and application of PANI/N-doped porous carbon under the protection of ZnO for supercapacitor electrode. J. Mater. Sci.: Mater. Electron. 28, 7333–7342 (2017)

    CAS  Google Scholar 

  38. F. Sun, J. Gao, X. Liu, X. Pi, Y. Yang, S. Wu, Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials. Appl. Surf. Sci. 387, 857–863 (2016)

    Article  CAS  Google Scholar 

  39. W. Tian, Q. Gao, W. Qian, Interlinked porous carbon nanoflakes derived from hydrolyzate residue during cellulosic bioethanol production for ultrahigh-rate supercapacitors in nonaqueous electrolytes. ACS Sustain. Chem. Eng. 5, 1297–1305 (2016)

    Article  Google Scholar 

  40. T. Wei, X. Wei, Y. Gao, H. Li, Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors. Electrochim. Acta 169, 186–194 (2015)

    Article  CAS  Google Scholar 

  41. D. Ma, G. Wu, J. Wan, F. Ma, W. Geng, S. Song, Oxygen-enriched hierarchical porous carbon derived from biowaste sunflower heads for high-performance supercapacitors. RSC Adv. 5, 107785–107792 (2015)

    Article  CAS  Google Scholar 

  42. W. Tian, Q. Gao, Y. Tan, Z. Li, Unusual interconnected graphitized carbon nanosheets as the electrode of high-rate ionic liquid-based supercapacitor. Carbon 119, 287–295 (2017)

    Article  CAS  Google Scholar 

  43. I.I.G. Inal, S.M. Holmes, A. Banford, Z. Aktas, The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Appl. Surf. Sci. 357, 696–703 (2015)

    Article  CAS  Google Scholar 

  44. M. Gopiraman, D. Deng, B. Kim, I. Chung, I.S. Kim, Three-dimensional cheese-like carbon nanoarchitecture with tremendous surface area and pore construction derived from corn as superior electrode materials for supercapacitors. Appl. Surf. Sci. 409, 52–59 (2017)

    Article  CAS  Google Scholar 

  45. Y.Q. Zhao, M. Lu, P.Y. Tao, Y.J. Zhang, X.T. Gong, Z. Yang, G.Q. Zhang, H.L. Li, Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J. Power Sources 307, 391–400 (2016)

    Article  CAS  Google Scholar 

  46. D.H. Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19, 438–447 (2009)

    Article  Google Scholar 

  47. Z. Li, Z. Xu, X. Tan, H. Wang, C.M.B. Holt, T. Stephenson, B.C. Olsen, D. Mitlin, Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 6, 871–878 (2013)

    Article  CAS  Google Scholar 

  48. A. Izadinajafabadi, S. Yasuda, K. Kobashi, T. Yamada, D.N. Futaba, H. Hatori, M. Yumura, S. Iijima, K. Hata, Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv. Mater. 22, 235–241 (2010)

    Article  Google Scholar 

  49. H. Li, D. Yuan, C. Tang, S. Wang, J. Sun, Z. Li, T. Tang, F. Wang, H. Gong, C. He, Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon 100, 151–157 (2016)

    Article  CAS  Google Scholar 

  50. E. Redondo, J. Carretero-González, E. Goikolea, J. Ségalini, R. Mysyk, Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochim. Acta 160, 178–184 (2015)

    Article  CAS  Google Scholar 

  51. J.G. Wang, H. Liu, H. Sun, W. Hua, H. Wang, X. Liu, B. Wei, One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127, 85–92 (2018)

    Article  CAS  Google Scholar 

  52. J.G. Wang, H. Liu, X. Zhang, X. Li, X. Liu, F. Kang, Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage. Small 14, 1703950 (2018)

    Article  Google Scholar 

  53. D. Guo, X. Chen, Z. Fang, Y. He, C. Zheng, Z. Yang, K. Yang, Y. Chen, S. Huang, Hydrangea-like multi-scale carbon hollow submicron spheres with hierarchical pores for high performance supercapacitor electrodes. Electrochim. Acta 176, 207–214 (2015)

    Article  CAS  Google Scholar 

  54. B. Liu, Y. Liu, H. Chen, H. Li, Oxygen and nitrogen co-doped porous carbon nanosheets derived from perilla frutescens, for high volumetric performance supercapacitors. J. Power Sources 341, 309–317 (2017)

    Article  CAS  Google Scholar 

  55. E. Raymundo-Piñero, M. Cadek, F. Béguin, Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 19, 1032–1039 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Authors appreciate financial support from the China Government 1000 Plan Talent Program, China MOE NCET Program, Natural Science Foundation of China (51322204), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120111120009) and Fundamental Research Funds for the Central Universities (WK2060140014, WK2060140017, 2013HGXJ0199, J2014HGXJ0092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Li or Yanwu Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Li, Q., Wang, J. et al. Heteroatoms (O, N)-doped porous carbon derived from bamboo shoots shells for high performance supercapacitors. J Mater Sci: Mater Electron 29, 20991–21001 (2018). https://doi.org/10.1007/s10854-018-0244-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0244-1

Navigation