Skip to main content
Log in

Flexible cementite/ferroferric oxide/silicon dioxide/carbon nanofibers composite membrane with low-frequency dispersion weakly negative permittivity

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The application of negative permittivity materials in new principle electronic devices has put forward strict requirements on the value and dispersion of negative permittivity, and the flexibility of negative permittivity materials is also needed in the new generation of wearable electronic devices. In this work, the flexible cementite (Fe3C)/ferroferric oxide (Fe3O4)/silicon dioxide (SiO2)/carbon nanofibers composite membrane with weakly and low-frequency dispersion negative permittivity was prepared by electrospinning and high temperature carbonization. Carbon nanofibers were connected to each other to form a flexible conductive network with negative permittivity response, which can be regulated by adding Fe3C and Fe3O4 conductive particles to carbon nanofibers to adjust the carrier concentration. The addition of SiO2 not only improves the flexibility of the material, but also the contact of SiO2 with isolated Fe3C and Fe3O4 particles produces a positive permittivity response due to interfacial polarization. By controlling the content of Fe3C and Fe3O4, the intensity of positive and negative permittivity responses can be regulated, and through the synergistic effect of positive and negative permittivity responses (described by Drude-Debye model), the weakly (about − 80) and low-frequency dispersion negative permittivity was realized in the material. Our study not only offers valuable guidance for the fabrication of flexible materials with negative permittivity, but also addresses the issue of high-frequency dispersion associated with negative permittivity, thereby broadening the potential applications of such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author.

References

  1. Tang L, Zhang J, Wu C, Tang Y, Ma H, Kong J, Gu J (2021) UV etched random copolymer membrane coated PBO fibers/cyanate ester wave-transparent laminated composites. Compos Pt B-Eng 212:108680. https://doi.org/10.1016/j.compositesb.2021.108680

    Article  CAS  Google Scholar 

  2. Zheng B, Zhu R, Jing L, Yang Y, Shen L, Wang H, Wang Z, Zhang X, Liu X, Li E, Chen H (2018) 3D visible-light invisibility cloak. Adv Sci 5(6):1800056. https://doi.org/10.1002/advs.201800056

    Article  Google Scholar 

  3. Lai W, Lou Q, Zhang J, Fan Z, Wang Q, Park CH, Chen G (2022) Toward enhanced output performance by optimizing permittivity of capacitor medium in electret-based energy harvester. Nano Energy 95:107057. https://doi.org/10.1016/j.nanoen.2022.107057

    Article  CAS  Google Scholar 

  4. Timurdogan E, Poulton CV, Byrd MJ, Watts MR (2017) Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat Photonics 11(3):200–206. https://doi.org/10.1038/nphoton.2017.14

    Article  CAS  Google Scholar 

  5. Pendry JB, Holden AJ, Stewart WJ, Youngs I (1996) Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 76(25):4773–4776. https://doi.org/10.1103/PhysRevLett.76.4773

    Article  CAS  Google Scholar 

  6. Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and negative refractive index. Science 305(5685):788–792. https://doi.org/10.1126/science.1096796

    Article  CAS  Google Scholar 

  7. Xie P, Zhang Z, Wang Z, Sun K, Fan R (2019) Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures. Research 2019:1021368. https://doi.org/10.34133/2019/1021368

  8. Shi Z, Wang J, Mao F, Yang C, Zhang C, Fan R (2017) Significantly improved dielectric performances of sandwich-structured polymer composites induced by alternating positive-k and negative-k layers. J Mater Chem A 5(28):14575–14582. https://doi.org/10.1039/C7TA03403B

    Article  CAS  Google Scholar 

  9. Sun L, Shi Z, He B, Wang H, Liu S, Huang M, Shi J, Dastan D, Wang H (2021) Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: a novel design targeting advanced energy storage capacitors. Adv Funct Mater 31(35):2100280. https://doi.org/10.1002/adfm.202100280

    Article  CAS  Google Scholar 

  10. Engheta N (2015) 150 years of Maxwell’s equations. Science 349(6244):136–137. https://doi.org/10.1126/science.aaa7224

    Article  CAS  Google Scholar 

  11. Li Y, Engheta N (2018) Capacitor-inspired metamaterial inductors Phys Rev Appl 10(5):054021. https://doi.org/10.1103/PhysRevApplied.10.054021

    Article  Google Scholar 

  12. Si M, Su C, Jiang C, Conrad NJ, Zhou H, Maize KD, Qiu G, Wu C-T, Shakouri A, Alam MA, Ye PD (2018) Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat Nanotechnol 13(1):24–28. https://doi.org/10.1038/s41565-017-0010-1

    Article  CAS  Google Scholar 

  13. Pacchioni G (2022) Sustainable flexible supercapacitors Nat Rev Mater 7:844. https://doi.org/10.1038/s41578-022-00508-y

    Article  Google Scholar 

  14. Shi Z, Fan R, Zhang Z, Qian L, Gao M, Zhang M, Zheng L, Zhang X, Yin L (2012) Random composites of nickel networks supported by porous alumina toward double negative materials. Adv Mater 24(17):2349–2352. https://doi.org/10.1002/adma.201200157

    Article  CAS  Google Scholar 

  15. Wang Z, Sun K, Xie P, Liu Y, Gu Q, Fan R, Wang J (2020) Epsilon-negative BaTiO3/Cu composites with high thermal conductivity and yet low electrical conductivity. J Materiomics 6(1):145–151. https://doi.org/10.1016/j.jmat.2020.01.007

    Article  Google Scholar 

  16. Wang Z, Sun K, Xie P, Hou Q, Liu Y, Gu Q, Fan R (2020) Design and analysis of negative permittivity behaviors in barium titanate/nickel metacomposites. Acta Mater 185:412–419. https://doi.org/10.1016/j.actamat.2019.12.034

    Article  CAS  Google Scholar 

  17. Liu M, Wu H, Wu Y, Xie P, Pashameah RA, Abo-Dief HM, El-Bahy SM, Wei Y, Li G, Li W, Liang G, Liu C, Sun K, Fan R (2022) The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv Compos Hybrid Mater 5(3):2021–2030. https://doi.org/10.1007/s42114-022-00541-z

    Article  CAS  Google Scholar 

  18. Cheng C, Fan R, Wang Z, Shao Q, Guo X, Xie P, Yin Y, Zhang Y, An L, Lei Y, Ryu JE, Shankar A, Guo Z (2017) Tunable and weakly negative permittivity in carbon/silicon nitride composites with different carbonizing temperatures. Carbon 125:103–112. https://doi.org/10.1016/j.carbon.2017.09.037

    Article  CAS  Google Scholar 

  19. Zhang J, Wang Y, Wang Y, Zhang M (2017) Catalytic activity for oxygen reduction reaction on CoN2 embedded graphene: a density functional theory study. J Electrochem Soc 164(12):F1122. https://doi.org/10.1149/2.1031712jes

    Article  CAS  Google Scholar 

  20. Xie P, Sun W, Liu Y, Du A, Zhang Z, Wu G, Fan R (2018) Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 129:598–606. https://doi.org/10.1016/j.carbon.2017.12.009

    Article  CAS  Google Scholar 

  21. Cheng CB, Fan R, Ren Y, Ding T, Qian L, Guo J, Li X, An L, Lei Y, Yin Y, Guo Z (2017) Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. Nanoscale 9(18):5779–5787. https://doi.org/10.1039/C7NR01516J

    Article  CAS  Google Scholar 

  22. Inagaki M, Yang Y, Kang F (2012) Carbon nanofibers prepared via electrospinning. Adv Mater 24(19):2547–2566. https://doi.org/10.1002/adma.201104940

    Article  CAS  Google Scholar 

  23. Zhao Y (2014) Facile synthesis of Pd nanoparticles on SiO2 for hydrogenation of biomass-derived furfural. Environ Chem Lett 12(1):185–190. https://doi.org/10.1007/s10311-013-0424-4

    Article  CAS  Google Scholar 

  24. Patel S, Hota G (2016) Iron oxide nanoparticle-immobilized PAN nanofibers: synthesis and adsorption studies. RSC Adv 6(19):15402–15414. https://doi.org/10.1039/C5RA20345G

    Article  CAS  Google Scholar 

  25. Yanilmaz M, Lu Y, Zhu J, Zhang X (2016) Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries. J Power Sources 313:205–212. https://doi.org/10.1016/j.jpowsour.2016.02.089

    Article  CAS  Google Scholar 

  26. Li X, Yang C, He C, Zhi L, Bai J, Guo J, Li W (2022) The sintering behavior of Fe-based oxygen carrier with straw ash and sawdust ash by thermodynamic and thermomechanical analysis. Fuel Process Technol 235:107346. https://doi.org/10.1016/j.fuproc.2022.107346

    Article  CAS  Google Scholar 

  27. Panzmer G, Egert B (1984) The bonding state of sulfur segregated to α-iron surfaces and on iron sulfide surfaces studied by XPS. AES and ELS Surf Sci 144(2):651–664. https://doi.org/10.1016/0039-6028(84)90125-0

    Article  Google Scholar 

  28. Huang Y, Tang J, Gai L, Gong Y, Guan H, He R, Lyu H (2017) Different approaches for preparing a novel thiol-functionalized graphene oxide/Fe-Mn and its application for aqueous methylmercury removal. Chem Eng J 319:229–239. https://doi.org/10.1016/j.cej.2017.03.015

    Article  CAS  Google Scholar 

  29. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe. Co and Ni Appl Surf Sci 257(7):2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  30. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254(8):2441–2449. https://doi.org/10.1016/j.apsusc.2007.09.063

    Article  CAS  Google Scholar 

  31. Parrill TM, Chung YW (1991) Surface analysis of cubic silicon carbide (001). Surf Sci 243(1):96–112. https://doi.org/10.1016/0039-6028(91)90348-V

    Article  CAS  Google Scholar 

  32. Stoch A, Stoch J, Rakowska A (1994) An XPS and SEMS study of silica sol-gel/metal substrate interaction. Surf Interface Anal 22(1–12):242–247. https://doi.org/10.1002/sia.740220153

    Article  CAS  Google Scholar 

  33. Sprenger D, Bach H, Meisel W, Gütlich P (1990) XPS study of leached glass surfaces. J non-cryst Solids 126(1):111–129. https://doi.org/10.1016/0022-3093(90)91029-Q

    Article  CAS  Google Scholar 

  34. Wang P, Cheng L, Zhang L (2018) Lightweight, flexible SiCN ceramic nanowires applied as effective microwave absorbers in high frequency. Chem Eng J 338:248–260. https://doi.org/10.1016/j.cej.2017.12.008

    Article  CAS  Google Scholar 

  35. Liu M, Lan X, Zhang H, Xie P, Wu N, Yuan H, Sui K, Fan R, Liu C (2021) Iron/epoxy random metamaterials with adjustable epsilon-near-zero and epsilon-negative property. J Mater Sci-Mater Electron 32:15995–16007. https://doi.org/10.1007/s10854-021-06150-8

    Article  CAS  Google Scholar 

  36. Zhang Z, Liu M, Ibrahim MM, Wu H, Wu Y, Li Y, Mersal GAM, El Azab IH, El-Bahy SM, Huang M, Jiang Y, Liang G, Xie P, Liu C (2022) Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater 5(2):1054–1066. https://doi.org/10.1007/s42114-022-00486-3

    Article  CAS  Google Scholar 

  37. Song X, Fan G, Liu D, Wei Z, Liu Y, Fan R (2022) Bilayer dielectric composites with positive-ε and negative-ε layers achieving high dielectric constant and low dielectric loss. Compos part A-appl s 160:107071. https://doi.org/10.1016/j.compositesa.2022.107071

    Article  CAS  Google Scholar 

  38. Nader E (2007) Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317:1698–1702. https://doi.org/10.1126/science.1133268

    Article  CAS  Google Scholar 

  39. Jia S, Song S, Zhao X (2021) Selective adsorption and separation of dyes from aqueous solution by a zirconium-based porous framework material. Appl Organomet Chem 35(9):e6314. https://doi.org/10.1002/aoc.6314

    Article  CAS  Google Scholar 

  40. Wang Y, Lu H, Wang Y, Qiu J, Wen J, Zhou K, Chen L, Song G, Yao J (2016) Facile synthesis of TaOxNy photocatalysts with enhanced visible photocatalytic activity. RSC Adv 6(3):1860–1864. https://doi.org/10.1039/C5RA23087J

    Article  CAS  Google Scholar 

  41. Zhi L, Li J, Li X, Chen Y, Song Y, Yu J, Zhang Q (2019) Enhancing water solubility of N-dodecyl-d-gluconamide surfactant using borax. Chem Phys Lett 725:87–91. https://doi.org/10.1016/j.cplett.2019.04.003

    Article  CAS  Google Scholar 

  42. Zhao X, Wei Y, Zhao H, Gao Z, Zhang Y, Zhi L, Wang Y, Huang H (2018) Functionalized metal-organic frameworks for effective removal of rocephin in aqueous solutions. J Colloid Interf Sci 514:234–239. https://doi.org/10.1016/j.jcis.2017.12.041

    Article  CAS  Google Scholar 

  43. Zhao X, Wang T, Du G, Zheng M, Liu S, Zhang Z, Zhang Y, Gao X, Gao Z (2019) Effective removal of humic acid from aqueous solution in an Al-based metal–organic framework. J Chem Eng Date 64(8):3624–3631. https://doi.org/10.1021/acs.jced.9b00387

    Article  CAS  Google Scholar 

  44. Zhao X, Gao X, Zhang Y-N, Wang M, Gao X, Liu B (2023) Construction of dual sulfur sites in metal–organic framework for enhanced mercury(II) removal. J Colloid Interf Sci 631:191–201. https://doi.org/10.1016/j.jcis.2022.10.153

    Article  CAS  Google Scholar 

  45. Wang R, Wang Y, Mao S, Hao X, Duan X, Wen Y (2021) Different morphology MoS2 over the g-C3N4 as a boosted photo-catalyst for pollutant removal under visible-light. J. Inorg. Organomet. P 31(1):32–42. https://doi.org/10.1007/s10904-020-01626-2

  46. Xie P, Li Y, Hou Q, Sui K, Liu C, Fu X, Zhang J, Murugadoss V, Fan J, Wang Y, Fan R, Guo Z (2020) Tunneling-induced negative permittivity in Ni/MnO nanocomposites by a bio-gel derived strategy. J Mater Chem C 8(9):3029–3039. https://doi.org/10.1039/C9TC06378A

    Article  CAS  Google Scholar 

  47. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W, Xie P, Pan D, Liu C, Guo Z (2022) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater 5(1):419–430. https://doi.org/10.1007/s42114-021-00378-y

    Article  CAS  Google Scholar 

  48. Xie P, Wang Z, Zhang Z, Fan R, Cheng C, Liu H, Liu Y, Li T, Yan C, Wang N, Guo Z (2018) Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. J Mater Chem C 6(19):5239–5249. https://doi.org/10.1039/C7TC05911F

    Article  CAS  Google Scholar 

Download references

Funding

This research is financially supported by the National Natural Science Foundation of China [52101176], the National Key Research and Development Program of China [2022YFB3505104]. Deanship of Scientific Research, Taif University, funded this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have made contributions to this work. Material preparation, data collection, and analysis were performed by Mingxiang Liu, Han Wu, Yingjie Wang, Juanna Ren, Dalal A. Alshammari, Hassan Algadi, Peitao Xie, and Yao Liu. Mingxiang Liu, Peitao Xie, and Yao Liu wrote the manuscript. Peitao Xie and Yao Liu gave the meaningful advice in the analysis of the performance of nanocomposites. Peitao Xie, Yao Liu, Hassan E. Abd Elsalam, and Islam H. El Azab gave financial support for this work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Peitao Xie or Yao Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wu, H., Wang, Y. et al. Flexible cementite/ferroferric oxide/silicon dioxide/carbon nanofibers composite membrane with low-frequency dispersion weakly negative permittivity. Adv Compos Hybrid Mater 6, 217 (2023). https://doi.org/10.1007/s42114-023-00799-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00799-x

Keywords

Navigation