Skip to main content
Log in

Semi-template based, biomimetic-architectured, and mechanically robust ceramic nanofibrous aerogels for thermal insulation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Energy efficient buildings require novel thermal insulators accompanied by lightweight, mechanically robust, fire resistant, and low thermal conductivity. Ceramic fibrous aerogels have emerged as promising candidates, however it’s difficult for these materials to achieve exceptional mechanical and thermal insulation performance simultaneously. Here, we demonstrate a unique semi-template method to fabricate biomimetic-architectured silica/carbon dual-fibrous aerogel with robust mechanical performance. Specifically, aerogels with honeycomb-like cellular and nanofiber/nanonet cell wall were constructed by freezedrying the homogeneous dispersion of SiO2 nanofibers and cellulose nanofibers co-suspensions. It is worth noting that the biomimetic structure has been perfectly inherited even subjected to high-temperature carbonization. As a result, the excellent structural stability brought by the novel structure enables the aerogel to completely recover under large compression and buckling strain of 80%, and exhibit robust fatigue resistance over 200,000 cycles. More importantly, the aerogels exhibit ultralow thermal conductivity (0.023 W·m−1·K−1), superior flame retardancy, together with excellent thermal insulation performance over a wide temperature ranging from −196 to 350 °C. The fabrication of such materials may provide new ideas for the development of next-generation thermal insulators for harsh conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kistler, S. S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741–741.

    Article  CAS  Google Scholar 

  2. Wu, X. L.; Wen, T.; Guo, H. L.; Yang, S. B.; Wang, X. K.; Xu, A. W. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 2013, 7, 3589–3597.

    Article  CAS  Google Scholar 

  3. Xu, W. Z.; Xing, Y.; Liu, J.; Wu, H. P.; Cui, Y.; Li, D. W.; Guo, D. Y.; Li, C. R.; Liu, A. P.; Bai, H. Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 2019, 13, 7930–7938.

    Article  CAS  Google Scholar 

  4. He, Y. L.; Xie, T. Advances of thermal conductivity models of nanoscale silica aerogel insulation material. Appl. Therm. Eng. 2015, 81, 28–50.

    Article  CAS  Google Scholar 

  5. Wei, G. S.; Liu, Y. S.; Zhang, X. X.; Yu, F.; Du, X. Z. Thermal conductivities study on silica aerogel and its composite insulation materials. Int. J. Heat Mass Transfer 2011, 54, 2355–2366.

    Article  CAS  Google Scholar 

  6. He, S.; Huang, Y. J.; Chen, G. N.; Feng, M. M.; Dai, H. M.; Yuan, B. H.; Chen, X. F. Effect of heat treatment on hydrophobic silica aerogel. J. Hazard. Mater. 2019, 362, 294–302.

    Article  CAS  Google Scholar 

  7. Zu, Y. F.; Sha, J. J.; Li, J.; Zhang, Z. F.; Wang, S. H.; Lv, Z. Z.; Dai, J. X. Effect of multi-walled carbon nanotubes on microstructure and fracture properties of carbon fiber-reinforced ZrB2-based ceramic composite. Ceram. Int. 2017, 43, 7454–7460.

    Article  CAS  Google Scholar 

  8. Jiang, R.; Yang, L. W.; Liu, H. T.; Sun, X.; Cheng, H. F. High-temperature mechanical properties of nextel™ 610 fiber reinforced silica matrix composites. Ceram. Int. 2018, 44, 15356–15361.

    Article  CAS  Google Scholar 

  9. Zhang, J.; Fan, J. P.; Zhang, J. Y.; Zhou, J.; Liu, X. M.; Qie, D. C.; Zhang, D. H. Developing and preparing interfacial coatings for high tensile strength silicon nitride fiber reinforced silica matrix composites. Ceram. Int. 2018, 44, 5297–5303.

    Article  CAS  Google Scholar 

  10. Hu, P.; Cheng, Y.; Wang, P.; Guo, X.; Ma, C.; Qu, Q.; Zhang, X. H.; Du, S. Y. Rolling compacted fabrication of carbon fiber reinforced ultra-high temperature ceramics with highly oriented architectures and exceptional mechanical feedback. Ceram. Int. 2018, 44, 14907–14912.

    Article  CAS  Google Scholar 

  11. Yu, H. J.; Jiang, Y. T.; Lu, Y. F.; Li, X. L.; Zhao, H. Y.; Ji, Y. C.; Wang, M. J. Quartz fiber reinforced Al2O3-SiO2 aerogel composite with highly thermal stability by ambient pressure drying. J. Non-Cryst. Solids 2019, 505, 79–86.

    Article  CAS  Google Scholar 

  12. Dourbash, A.; Buratti, C.; Belloni, E.; Motahari, S. Preparation and characterization of polyurethane/silica aerogel nanocomposite materials. J. Appl. Polym. Sci. 2017, 134, 44521.

    Article  CAS  Google Scholar 

  13. Mao, X.; Si, Y.; Chen, Y. C.; Yang, L. P.; Zhao, F.; Ding, B.; Yu, J. Y. Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Adv. 2012, 2, 12216–12223.

    Article  CAS  Google Scholar 

  14. An, Z. M.; Ye, C. S.; Zhang, R. B.; Zhou, P. Flexible and recoverable SiC nanofiber aerogels for electromagnetic wave absorption. Ceram. Int. 2019, 45, 22793–22801.

    Article  CAS  Google Scholar 

  15. Yan, J. H.; Han, Y. H.; Xia, S. H.; Wang, X.; Zhang, Y. Y.; Yu, J. Y.; Ding, B. Polymer template synthesis of flexible BaTiO3 crystal nanofibers. Adv. Funct. Mater. 2019, 29, 1907919.

    Article  CAS  Google Scholar 

  16. Meza, L. R.; Das, S.; Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 2014, 345, 1322–1326.

    Article  CAS  Google Scholar 

  17. Su, L.; Wang, H. J.; Niu, M.; Fan, X. Y.; Ma, M. B.; Shi, Z. Q.; Guo, S. W. Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel. ACS Nano 2018, 12, 3103–3111.

    Article  CAS  Google Scholar 

  18. Su, L.; Li, M. Z.; Wang, H. J.; Niu, M.; Lu, D.; Cai, Z. X. Resilient Si3N4 Nanobelt Aerogel as fire-resistant and electromagnetic wave-transparent thermal insulator. ACS Appl. Mater. Interfaces 2019, 11, 15795–15803.

    Article  CAS  Google Scholar 

  19. Xu, X.; Zhang, Q. Q.; Hao, M. L.; Hu, Y.; Lin, Z. Y.; Peng, L. L.; Wang, T.; Ren, X. X.; Wang, C.; Zhao, Z. P. et al. Double-negativeindex ceramic aerogels for thermal superinsulation. Science 2019, 363, 723–727.

    Article  CAS  Google Scholar 

  20. Wicklein, B.; Diem, A. M.; Knöller, A.; Cavalcante, M. S.; Bergström, L.; Bill, J.; Burghard, Z. Dual-fiber approach toward flexible multifunctional hybrid materials. Adv. Funct. Mater. 2018, 28, 1704274.

    Article  CAS  Google Scholar 

  21. Si, Y.; Wang, X. Q.; Dou, L. Y.; Yu, J. Y.; Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 2018, 4, eaas8925.

    Article  CAS  Google Scholar 

  22. Wang, F.; Dou, L. Y.; Dai, J. W.; Li, Y. Y.; Huang, L. Q.; Si, Y.; Yu, J. Y.; Ding, B. In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angew. Chem., Int. Ed. 2020, 59, 8285–8292.

    Article  CAS  Google Scholar 

  23. Zhang, X. X.; Wang, F.; Dou, L. Y.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300 °C. ACS Nano 2020, 14, 15616–15625.

    Article  CAS  Google Scholar 

  24. Yang, M.; Zhao, N. F.; Cui, Y.; Gao, W. W.; Zhao, Q.; Gao, C.; Bai, H.; Xie, T. Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano 2017, 11, 6817–6824.

    Article  CAS  Google Scholar 

  25. Cui, Y.; Gong, H. X.; Wang, Y. J.; Li, D. W.; Bai, H. A thermally insulating textile inspired by polar bear hair. Adv. Mater. 2018, 30, 1706807.

    Article  CAS  Google Scholar 

  26. Jiang, B.; Chen, C. J.; Liang, Z. Q.; He, S. M.; Kuang, Y. D.; Song, J. W.; Mi, R. Y.; Chen, G. G.; Jiao, M. L.; Hu, L. B. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement. Adv. Funct. Mater. 2020, 30, 1906307.

    Article  CAS  Google Scholar 

  27. Yu, Z. L.; Qin, B.; Ma, Z. Y.; Gao, Y. C.; Guan, Q. F.; Yang, H. B.; Yu, S. H. Emerging bioinspired artificial woods. Adv. Mater. 2021, 33, 2001086.

    Article  CAS  Google Scholar 

  28. Chen, C. J.; Li, Z. H.; Mi, R. Y.; Dai, J. Q.; Xie, H.; Pei, Y.; Li, J. G.; Qiao, H. Y.; Tang, H.; Yang, B. et al. Rapid processing of whole bamboo with exposed, aligned nanofibrils toward a highperformance structural material. ACS Nano 2020, 14, 5194–5202.

    Article  CAS  Google Scholar 

  29. Ajdari, A.; Jahromi, B. H.; Papadopoulos, J.; Nayeb-Hashemi, H.; Vaziri, A. Hierarchical honeycombs with tailorable properties. Int. J. Solids Struct. 2012, 49, 1413–1419.

    Article  Google Scholar 

  30. Wang, J.; Liu, J. L.; Chao, D. L.; Yan, J. X.; Lin, J. Y.; Shen, Z. X. Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage. Adv. Mater. 2014, 26, 7162–7169.

    Article  CAS  Google Scholar 

  31. Dong, K.; Liang, J.; Wang, Y. Y.; Xu, Z. Q.; Liu, Q.; Luo, Y. L.; Li, T. S.; Li, L.; Shi, X. F.; Asiri, A. M. et al. Honeycomb carbon nanofibers: A superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 10583–10587.

    Article  CAS  Google Scholar 

  32. Cho, S. J.; Kim, B. S.; Min, D. K.; Cho, Y. S.; Park, J. H. Honeycomb-shaped meta-structure for minimizing noise radiation and resistance to cooling fluid flow of home appliances. Compos. Struct. 2016, 155, 1–7.

    Article  Google Scholar 

  33. Lin, Y. L.; Zhang, Z. F.; Chen, R.; Li, Y.; Wen, X. J.; Lu, F. Y. Cushioning and energy absorbing property of combined aluminum honeycomb. Adv. Eng. Mater. 2015, 17, 1434–1441.

    Article  Google Scholar 

  34. Cho, M. W.; Kim, J.; Jeong, J. M.; Yim, B.; Lee, H. J.; Yoo, Y. Excellent toluene removal via adsorption by honeycomb adsorbents under high temperature and humidity conditions. Environ. Eng. Res. 2020, 25, 171–177.

    Article  Google Scholar 

  35. Berkefeld, A.; Heyer, M.; Milow, B. Silica aerogel paper honeycomb composites for thermal insulations. J. Sol-Gel Sci. Technol. 2017, 84, 486–495.

    Article  CAS  Google Scholar 

  36. Ge, J. L.; Zong, D. D.; Jin, Q.; Yu, J. Y.; Ding, B. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions. Adv. Funct. Mater. 2018, 28, 1705051.

    Article  CAS  Google Scholar 

  37. Huang, J.; Lei, Y.; Wang, L. L.; Yan, T. T.; Liu, J. K.; Chen, Q. H. Preparation of hydroxyapatite whisker honeycomb scaffolds via foaming method. J. Synth. Cryst. 2016, 45, 2862–2865.

    CAS  Google Scholar 

  38. Hou, X. S.; Zhu, G. L.; Ren, L. J.; Huang, Z. H.; Zhang, R. B.; Ungar, G.; Yan, L. T.; Wang, W. Mesoscale graphene-like honeycomb mono- and multilayers constructed via self-assembly of coclusters. J. Am. Chem. Soc. 2018, 140, 1805–1811.

    Article  CAS  Google Scholar 

  39. Deville, S. Ice-templating, freeze casting: Beyond materials processing. J. Mater. Res. 2013, 28, 2202–2219.

    Article  CAS  Google Scholar 

  40. Li, W. L.; Lu, K.; Walz, J. Y. Freeze casting of porous materials: Review of critical factors in microstructure evolution. Int. Mater. Rev. 2012, 57, 37–60.

    Article  CAS  Google Scholar 

  41. Shao, G. F.; Hanaor, D. A. H.; Shen, X. D.; Gurlo, A. Freeze casting: From low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 2020, 32, 1907176.

    Article  CAS  Google Scholar 

  42. Li, G. Y.; Zhu, M. Y.; Gong, W. B.; Du, R.; Eychmüller, A.; Li, T. T.; Lv, W. B.; Zhang, X. T. Boron nitride aerogels with super-flexibility ranging from liquid nitrogen temperature to 1000 °C. Adv. Funct. Mater. 2019, 29, 1900188.

    Article  CAS  Google Scholar 

  43. Tang, N.; Zhang, S. C.; Si, Y.; Yu, J. Y.; Ding, B. An ultrathin bacterial cellulose membrane with a voronoi-net structure for low pressure and high flux microfiltration. Nanoscale 2019, 17, 17851–17859.

    Article  Google Scholar 

  44. Li, C.; Ding, Y. W.; Hu, B. C.; Wu, Z. Y.; Gao, H. L.; Liang, H. W.; Chen, J. F.; Yu, S. H. Temperature-invariant superelastic and fatigue resistant carbon nanofiber aerogels. Adv. Mater. 2020, 32, 1904331.

    Article  CAS  Google Scholar 

  45. Su, L.; Wang, H. J.; Niu, M.; Dai, S.; Cai, Z. X.; Yang, B. G.; Huyan, H. X.; Pan, X. Q. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci. Adv. 2020, 6, eaay6689.

    Article  CAS  Google Scholar 

  46. Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y. Z.; Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 2012, 3, 1241.

    Article  CAS  Google Scholar 

  47. Gao, H. L.; Zhu, Y. B.; Mao, L. B.; Wang, F. C.; Luo, X. S.; Liu, Y. Y.; Lu, Y.; Pan, Z.; Ge, J.; Shen, W. et al. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 2016, 7, 12920.

    Article  CAS  Google Scholar 

  48. Wang, H. L.; Zhang, X.; Wang, N.; Li, Y.; Feng, X.; Huang, Y.; Zhao, C. S.; Liu, Z. L.; Fang, M. H.; Ou, G. et al. Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges. Sci. Adv. 2017, 3, e1603170.

    Article  CAS  Google Scholar 

  49. Xu, C. C.; Wang, H. L.; Song, J. A.; Bai, X. P.; Liu, Z. L.; Fang, M. H.; Yuan, Y. S.; Sheng, J. Y.; Li, X. Y.; Wang, N. et al. Ultralight and resilient Al2O3 nanotube aerogels with low thermal conductivity. J. Am. Ceram. Soc. 2018, 101, 1677–1683.

    Article  CAS  Google Scholar 

  50. Cao, L. T.; Si, Y.; Wu, Y. Y.; Wang, X. Q.; Yu, J. Y.; Ding, B. Ultralight, superelastic and bendable lashing-structured nanofibrous aerogels for effective sound absorption. Nanoscale 2019, 17, 2289–2298.

    Article  Google Scholar 

  51. Li, Y. Y.; Cao, L. T.; Yin, X.; Si, Y.; Yu, J. Y.; Ding, B. Semi-interpenetrating polymer network biomimetic structure enables superelastic and thermostable nanofibrous aerogels for cascade filtration of PM2.5. Adv. Funct. Mater. 2020, 30, 1910426.

    Article  CAS  Google Scholar 

  52. Stojcevski, F.; Hilditch, T. B.; Gengenbach, T. R.; Henderson, L. C. Effect of carbon fiber oxidization parameters and sizing deposition levels on the fiber-matrix interfacial shear strength. Compos. Part A Appl. Sci. Manuf. 2018, 114, 212–224.

    Article  CAS  Google Scholar 

  53. Zhang, X.; Zhao, X. Y.; Xue, T. T.; Yang, F.; Fan, W.; Liu, T. X. Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem. Eng. J. 2020, 385, 123963.

    Article  Google Scholar 

  54. Lee, O. J.; Lee, K. H.; Yim, T. J.; Kim, S. Y.; Yoo, K. P. Determination of mesopore size of aerogels from thermal conductivity measurements. J. Non-Cryst. Solids 2002, 298, 287–292.

    Article  CAS  Google Scholar 

  55. Hayase, G.; Kugimiya, K.; Ogawa, M.; Kodera, Y.; Kanamori, K.; Nakanishi, K. The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators. J. Mater. Chem. A 2014, 2, 6525–6531.

    Article  CAS  Google Scholar 

  56. Li, T.; Song, J. W.; Zhao, X. P.; Yang, Z.; Pastel, G.; Xu, S. M.; Jia, C.; Dai, J. Q.; Chen, C. J.; Gong, A. et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. 2018, 4, eaar3724.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51925302, 21961132024, and 51873029), the Science and Technology Commission of Shanghai Municipality (No. 20QA1400500), China Postdoctoral Science Foundation (Nos. 2021TQ0163 and 2021M101821), and Shuimu Tsinghua Scholar Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Si or Bin Ding.

Electronic Supplementary Material

12274_2022_4194_MOESM1_ESM.pdf

Semi-template based, biomimetic-architectured, and mechanically robust ceramic nanofibrous aerogels for thermal insulation

Supplementary material, approximately 6.30 MB.

Supplementary material, approximately 2.57 MB.

Supplementary material, approximately 4.01 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, L., Si, Y., Yu, J. et al. Semi-template based, biomimetic-architectured, and mechanically robust ceramic nanofibrous aerogels for thermal insulation. Nano Res. 15, 5581–5589 (2022). https://doi.org/10.1007/s12274-022-4194-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4194-9

Keywords

Navigation