Skip to main content

Advertisement

Log in

Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Double network (DN) conductive hydrogels have become a hotspot for wearable sensors. However, building DN hydrogel-based strain sensors with excellent mechanical strength, high sensitivity, and wide operation window still remains a challenge. This paper fabricates a high-performance strain sensor from MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose (PVA/CMC) DN hydrogel which is further reinforced by tannic acid (TA). In this PCTM (short for PVA/CMC/TA/MXene hydrogel), PVA serves as the flexible backbone, CMC mainly functions as the rigid subnetwork skeleton in the hydrogel, and naturally occurring TA further enhances the mechanical properties of the hydrogel via tight hydrogen bonds between TA and the polymer chains of PVA and CMC. MXene is utilized to build the conductive path, and its abundant hydrophilic functional groups help to achieve a uniform distribution in the hydrogel, which is beneficial for achieving high sensitivity and wide operation window. The unique multiple synergetic networks of PCTM impart promising mechanical strength (a fracture tensile strength of 1.8 MPa at a fracture strain of 740%) and high sensitivity with a wide detection window (a gauge factor of 2.9 at a strain range of 0–700%) as well as long-term durability over 3000 continuous cycles. Moreover, the sensor also exhibits accurate response to different types of human motions. As a proof of concept, a PCTM sensor is fabricated for visual detection of the pressure, suggesting its promising potentials for stretchable electronic sensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang H, Han W, Xu K, Zhang Y, Lu Y, Nie Z, Du Y, Zhu J, Huang W (2020) Metallic sandwiched-aerogel hybrids enabling flexible and stretchable intelligent sensor. Nano Lett 20(5):3449–3458

    Article  CAS  Google Scholar 

  2. Li W, Jin X, Han X, Li Y, Wang W, Lin T, Zhu Z (2021) Synergy of porous structure and microstructure in piezoresistive material for high-performance and flexible pressure sensors. ACS Appl Mater Interfaces 13(16):19211–19220

    Article  CAS  Google Scholar 

  3. Liu Z, Li G, Qin Q, Mi L, Li G, Zheng G, Liu C, Li Q, Liu X (2021) Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator. Advanced Composites and Hybrid Materials 4(4):1215–1225

    Article  CAS  Google Scholar 

  4. Wang X, Liu X, Schubert DW (2021) Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Letters 13(1):64

    Article  Google Scholar 

  5. Kim DW, Yang JC, Lee S, Park S (2020) Neuromorphic processing of pressure signal using integrated sensor-synaptic device capable of selective and reversible short-and long-term plasticity operation. ACS Appl Mater Interfaces 12(20):23207–23216

    Article  CAS  Google Scholar 

  6. Wei H, Kong D, Li T, Xue Q, Wang S, Cui D, Huang Y, Wang L, Hu S, Wan T, Yang G (2021) Solution-processable conductive composite hydrogels with multiple synergetic networks toward wearable pressure/strain sensors. ACS Sens 6(8):2938–2951

    Article  CAS  Google Scholar 

  7. Chang X, Chen L, Chen J, Zhu Y, Guo Z (2021) Advances in transparent and stretchable strain sensors. Adv Compos Hybrid Mater 4(3):435–450

    Article  Google Scholar 

  8. Chen D, Liu Z, Li Y, Sun D, Liu X, Pang J, Liu H, Zhou W (2020) Unsymmetrical alveolate PMMA/MWCNT film as a piezoresistive E-Skin with Four-dimensional resolution and application for detecting motion direction and airflow rate. ACS Appl Mater Interfaces 12(27):30896–30904

    Article  CAS  Google Scholar 

  9. He Z, Yuan W (2021) Adhesive, stretchable, and transparent organohydrogels for antifreezing, antidrying, and sensitive ionic skins. ACS Appl Mater Interfaces 13(1):1474–1485

    Article  CAS  Google Scholar 

  10. Jiang N, Hu D, Xu Y, Chen J, Chang X, Zhu Y, Li Y, Guo Z (2021) Ionic liquid enabled flexible transparent polydimethylsiloxane sensors for both strain and temperature sensing. Adv Compos Hybrid Mater 4(3):574–583

    Article  CAS  Google Scholar 

  11. Li Y, Li L, Zhang Z, Cheng J, Fei Y, Lu L (2021) An all-natural strategy for versatile interpenetrating network hydrogels with self-healing, super-adhesion and high sensitivity. Chem Eng J 420:129736

    Article  CAS  Google Scholar 

  12. Wang Y, Qu Z, Wang W, Yu D (2021) PVA/CMC/PEDOT:PSS mixture hydrogels with high response and low impedance electronic signals for ECG monitoring. Colloids Surf B Biointerfaces 208:112088

    Article  CAS  Google Scholar 

  13. Zhao W, Zhang D, Yang Y, Du C, Zhang B (2021) A fast self-healing multifunctional polyvinyl alcohol nano-organic composite hydrogel as a building block for highly sensitive strain/pressure sensors. J Mater Chem A 9(38):22082–22094

    Article  CAS  Google Scholar 

  14. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y, Yang X, Kimura H, Hou C, Guo Z, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4(4):906–924

    Article  CAS  Google Scholar 

  15. Jiao Y, Lu Y, Lu K, Yue Y, Xu X, Xiao H, Li J, Han J (2021) Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application. J Colloid Interface Sci 597:171–181

    Article  CAS  Google Scholar 

  16. Li Z, Li M, Fan Q, Qi X, Qu L, Tian M (2021) Smart-fabric-based supercapacitor with long-term durability and waterproof properties toward wearable applications. ACS Appl Mater Interfaces 13(12):14778–14785

    Article  CAS  Google Scholar 

  17. Chen J, Huang Y, Ma X, Lei Y (2017) Functional self-healing materials and their potential applications in biomedical engineering. Adv Compos Hybrid Mater 1(1):94–113

    Article  Google Scholar 

  18. Peng Y, Yan B, Li Y, Lan J, Shi L, Ran R (2020) Antifreeze and moisturizing high conductivity PEDOT/PVA hydrogels for wearable motion sensor. J Mater Sci 55(3):1280–1291

    Article  CAS  Google Scholar 

  19. Sun J, Mu Q, Kimura H, Murugadoss V, He M, Du W, Hou C (2022) Oxidative degradation of phenols and substituted phenols in the water and atmosphere: a review. Adv Compos Hybrid Mater

  20. Shi W, Han G, Chang Y, Song H, Hou W, Chen Q (2020) Using stretchable PPy@PVA composites as a high-sensitivity strain sensor to monitor minute motion. ACS Appl Mater Interfaces 12(40):45373–45382

    Article  CAS  Google Scholar 

  21. Zhu Y, Lu W, Guo Y, Chen Y, Wu Y, Lu H (2018) Biocompatible, stretchable and mineral PVA–Gelatin–nHAP hydrogel for highly sensitive pressure sensors. RSC Adv 8(65):36999–37007

    Article  CAS  Google Scholar 

  22. Gu H, Gao C, Zhou X, Du A, Naik N, Guo Z (2021) Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv Compos Hybrid Mater 4(3):459–468

    Article  CAS  Google Scholar 

  23. Wu N, Zhao B, Liu J, Li Y, Chen Y, Chen L, Wang M, Guo Z (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 4(3):707–715

    Article  CAS  Google Scholar 

  24. Xiao L, Qi H, Qu K, Shi C, Cheng Y, Sun Z, Yuan B, Huang Z, Pan D, Guo Z (2021) Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv Compos Hybrid Mater 4(2):306–316

    Article  CAS  Google Scholar 

  25. Sedlačík T, Nonoyama T, Guo H, Kiyama R, Nakajima T, Takeda Y, Kurokawa T, Gong JP (2020) Preparation of tough double- and triple-network supermacroporous hydrogels through repeated cryogelation. Chem Mater 32(19):8576–8586

    Article  Google Scholar 

  26. Takahashi R, Shimano K, Okazaki H, Kurokawa T, Nakajima T, Nonoyama T, King DR, Gong JP (2018) Tough particle-based double network hydrogels for functional solid surface coatings. Adv Mater Interfaces 5(23):1801018

    Article  Google Scholar 

  27. More AP (2021) Flax fiber–based polymer composites: a review. Adv Compos Hybrid Mater 5(1):1–20

    Article  Google Scholar 

  28. Jing X, Li H, Mi HY, Liu YJ, Feng PY, Tan YM, Turng LS (2019) Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nanofibril hydrogel sensors for sensitive pressure sensing and human motion detection. Sens Actuators B Chem 295:159–167

    Article  CAS  Google Scholar 

  29. Abouzeid RE, Khiari R, Salama A, Diab M, Beneventi D, Dufresne A (2020) In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing. Int J Biol Macromol 160:538–547

    Article  CAS  Google Scholar 

  30. Li X, Wang J, Lin Y, Cheng Y, Han W, Yuan G, Jia H (2022) High-strength, biocompatible and multifunctional hydrogel sensor based on dual physically cross-linked network. Colloids Surf A 635:128091

    Article  CAS  Google Scholar 

  31. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  Google Scholar 

  32. Xu F, Bao D, Cui Y, Gao Y, Lin D, Wang X, Peng J, Geng H, Wang H (2021) Copper nanoparticle-deposited graphite sheets for highly thermally conductive polymer composites with reduced interfacial thermal resistance. Adv Compos Hybrid Mater

  33. Cai Y, Shen J, Ge G, Zhang Y, Jin W, Huang W, Shao J, Yang J, Dong X (2018) Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12(1):56–62

    Article  CAS  Google Scholar 

  34. Hu M, Gao Y, Jiang Y, Zeng H, Zeng S, Zhu M, Xu G, Sun L (2021) High-performance strain sensors based on bilayer carbon black/PDMS hybrids. Adv Compos Hybrid Mater 4(3):514–520

    Article  CAS  Google Scholar 

  35. Wei D, Zhu J, Luo L, Huang H, Li L, Yu X (2020) Fabrication of poly(vinyl alcohol)–graphene oxide–polypyrrole composite hydrogel for elastic supercapacitors. J Mater Sci 55(25):11779–11791

    Article  CAS  Google Scholar 

  36. Jin X, Jiang H, Li G, Fu B, Bao X, Wang Z, Hu Q (2020) Stretchable, conductive PAni-PAAm-GOCS hydrogels with excellent mechanical strength, strain sensitivity and skin affinity. Chem Eng J 394:124901

    Article  CAS  Google Scholar 

  37. Hu H, Zhong X, Yang S, Fu H (2020) Tough and stretchable Fe3O4/MoS2/PAni composite hydrogels with conductive and magnetic properties. Compos B Eng 182:107623

    Article  CAS  Google Scholar 

  38. Han X, Lv Z, Ran F, Dai L, Li C, Si C (2021) Green and stable piezoresistive pressure sensor based on lignin-silver hybrid nanoparticles/polyvinyl alcohol hydrogel. Int J Biol Macromol 176:78–86

    Article  CAS  Google Scholar 

  39. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci

  40. Ly TN, Park S (2020) Wearable strain sensor for human motion detection based on ligand-exchanged gold nanoparticles. J Ind Eng Chem 82:122–129

    Article  CAS  Google Scholar 

  41. Gao F, Zhao X, Zhang Z, An L, Xu L, Xun X, Zhao B, Ouyang T, Zhang Y, Liao Q, Wang L (2022) A stretching-insensitive, self-powered and wearable pressure sensor. Nano Energy 91:106695

    Article  CAS  Google Scholar 

  42. Sharma S, Chhetry A, Sharifuzzaman M, Yoon H, Park JY (2020) Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl Mater Interfaces 12(19):22212–22224

    Article  CAS  Google Scholar 

  43. Yang Z, Li H, Zhang S, Lai X, Zeng X (2021) Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor. Chem Eng J 425:130462

    Article  CAS  Google Scholar 

  44. Wang Q, Pan X, Lin C, Gao H, Cao S, Ni Y, Ma X (2020) Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics. Chem Eng J 401:126129

    Article  CAS  Google Scholar 

  45. Yin H, Li S, Xie H, Wu Y, Zou X, Huang Y, Wang J (2022) Construction of polydopamine reduced graphene oxide/sodium carboxymethyl cellulose/polyacrylamide double network conductive hydrogel with high stretchable, pH-sensitive and strain-sensing properties. Colloids Surf A 642:128428

    Article  CAS  Google Scholar 

  46. Li N, Chen G, Chen W, Huang J, Tian J, Wan X, He M, Zhang H (2017) Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength. Carbohydr Polym 178:159–165

    Article  CAS  Google Scholar 

  47. Li X, He L, Li Y, Chao M, Li M, Wan P, Zhang L (2021) Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors. ACS Nano 15(4):7765–7773

    Article  CAS  Google Scholar 

  48. Wang H, Li J, Yu X, Yan G, Tang X, Sun Y, Zeng X, Lin L (2021) Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Carbohydr Polym 255:117443

    Article  CAS  Google Scholar 

  49. Li M, Tu Q, Long X, Zhang Q, Jiang H, Chen C, Wang S, Min D (2021) Flexible conductive hydrogel fabricated with polyvinyl alcohol, carboxymethyl chitosan, cellulose nanofibrils, and lignin-based carbon applied as strain and pressure sensor. Int J Biol Macromol 166:1526–1534

    Article  CAS  Google Scholar 

  50. Guo Y, An X, Fan Z (2021) Aramid nanofibers reinforced polyvinyl alcohol/tannic acid hydrogel with improved mechanical and antibacterial properties for potential application as wound dressing. J Mech Behav Biomed Mater 118:104452

    Article  CAS  Google Scholar 

  51. Zhang H, Liu N, Shi Y, Liu W, Yue Y, Wang S, Ma Y, Wen L, Li L, Long F, Zou Z, Gao Y (2016) Piezoresistive sensor with high elasticity based on 3D hybrid network of Sponge@CNTs@Ag NPs. ACS Appl Mater Interfaces 8(34):22374–22381

    Article  CAS  Google Scholar 

  52. Ma Y, Yue Y, Zhang H, Cheng F, Zhao W, Rao J, Luo S, Wang J, Jiang X, Liu Z, Liu N, Gao Y (2018) 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4):3209–3216

    Article  CAS  Google Scholar 

  53. Zheng Y, Yin R, Zhao Y, Liu H, Zhang D, Shi X, Zhang B, Liu C, Shen C (2021) Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem Eng J 420:127720

    Article  CAS  Google Scholar 

  54. Zhang D, Yin R, Zheng Y, Li Q, Liu H, Liu C, Shen C (2022) Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem Eng J 438:135587

    Article  CAS  Google Scholar 

  55. Bu Y, Shen T, Yang W, Yang S, Zhao Y, Liu H, Zheng Y, Liu C, Shen C (2021) Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2T MXene/paper for human-motion monitoring and E-skin. Sci Bull 66(18):1849–1857

    Article  CAS  Google Scholar 

  56. Liu H, Chen X, Zheng Y, Zhang D, Zhao Y, Wang C, Pan C, Liu C, Shen C (2021) Lightweight, superelastic, and hydrophobic polyimide nanofiber /MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv Func Mater 31(13):2008006

    Article  CAS  Google Scholar 

  57. Ye Y, Zhang Y, Chen Y, Han X, Jiang F (2020) Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv Func Mater 30(35):2003430

    Article  CAS  Google Scholar 

  58. Hu J, Wu Y, Yang Q, Zhou Q, Hui L, Liu Z, Xu F, Ding D (2022) One-pot freezing-thawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring. Carbohyd Polym 275:118697

    Article  CAS  Google Scholar 

  59. Jing H, Shi J, Guoab P, Guan S, Fu H, Cui W (2021) Hydrogels based on physically cross-linked network with high mechanical property and recasting ability. Colloids Surf, A 611:125805

    Article  CAS  Google Scholar 

  60. Li W, Lu H, Zhang N, Ma M (2017) Enhancing the properties of conductive polymer hydrogels by freeze–thaw cycles for high-performance flexible supercapacitors. ACS Appl Mater Interfaces 9(23):20142–20149

    Article  CAS  Google Scholar 

  61. Bian H, Sun B, Cui J, Ren S, Lin T, Feng Y, Jia S (2018) Bienzyme magnetic nanobiocatalyst with Fe(3+)-tannic acid film for one-pot starch hydrolysis. J Agric Food Chem 66(33):8753–8760

    Article  CAS  Google Scholar 

  62. Chen W, Li N, Ma Y, Minus ML, Benson K, Lu X, Wang X, Ling X, Zhu H (2019) Superstrong and tough hydrogel through physical cross-linking and molecular alignment. Biomacromol 20(12):4476–4484

    Article  CAS  Google Scholar 

  63. Li W, Li X, Chang W, Wu J, Liu P, Wang J, Yao X, Yu ZZ (2020) Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res 13(11):3048–3056

    Article  CAS  Google Scholar 

  64. Feng X, Hou X, Cui C, Sun S, Sadik S, Wu S, Zhou F (2021) Mechanical and antibacterial properties of tannic acid-encapsulated carboxymethyl chitosan/polyvinyl alcohol hydrogels. Eng Regen 2:57–62

    Google Scholar 

  65. Yan Q, Zhou M, Fu H (2020) Study on mussel-inspired tough TA/PANI@CNCs nanocomposite hydrogels with superior self-healing and self-adhesive properties for strain sensors. Compos B Eng 201:108356

    Article  CAS  Google Scholar 

  66. Wei D, Liu Q, Liu Z, Liu J, Zheng X, Pei Y, Tang K (2019) Modified nano microfibrillated cellulose/carboxymethyl chitosan composite hydrogel with giant network structure and quick gelation formability. Int J Biol Macromol 135:561–568

    Article  CAS  Google Scholar 

  67. Yu Y, Yuk H, Parada GA, Wu Y, Liu X, Nabzdyk CS, Youcef-Toumi K, Zang J, Zhao X (2018) Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes. Adv Mater 31(7):1807101

    Article  Google Scholar 

  68. Li S, Zhou H, Li Y, Jin X, Liu H, Lai J, Wu Y, Chen W, Ma A (2021) Mussel-inspired self-adhesive hydrogels by conducting free radical polymerization in both aqueous phase and micelle phase and their applications in flexible sensors. J Colloid Interface Sci 607:431–439

    Article  Google Scholar 

  69. Zhang L, Lu Y, Lu S, Zhang H, Zhao Z, Ma C, Ma K, Wang X (2021) Lifetime health monitoring of fiber reinforced composites using highly flexible and sensitive MXene/CNT film sensor. Sens Actuators A 332:113148

    Article  CAS  Google Scholar 

  70. He F, You X, Gong H, Yang Y, Bai T, Wang W, Guo W, Liu X, Ye M (2020) Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl Mater Interfaces 12(5):6442–6450

    Article  CAS  Google Scholar 

  71. Li Y, Yang Y, Liu X, Chen C, Qian C, Han L, Han Q (2021) Highly sensitive and wearable self-powered sensors based on a stretchable hydrogel comprising dynamic hydrogen bond and dual coordination bonds. Colloids Surf A 628:127336

    Article  CAS  Google Scholar 

  72. Qu X, Wang S, Zhao Y, Huang H, Wang Q, Shao J, Wang W, Dong X (2021) Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor. Chem Eng J 425:131523

    Article  CAS  Google Scholar 

  73. Qu X, Wang S, Zhao Y, Huang H, Wang Q, Shao J, Wang W, Dong X (2021) Wide temperature-tolerant polyaniline/cellulose/polyacrylamide hydrogels for high-performance supercapacitors and motion sensors. Carbohyd Polym 267:118207

    Article  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (51703162), the Young Elite Scientists Sponsorship Program by Tianjin (TJSQNTJ-2018–03), and the Taif University Researchers Supporting Project number (TURSP-2020/135), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dapeng Cui or Huige Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 1659 KB)

Supplementary file2 (MP4 2754 KB)

Supplementary file3 (MP4 9148 KB)

Supplementary file4 (MP4 9030 KB)

Supplementary file5 (DOCX 2273 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, D., El-Bahy, Z.M., Algadi, H. et al. Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv Compos Hybrid Mater 5, 1976–1987 (2022). https://doi.org/10.1007/s42114-022-00531-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00531-1

Keywords

Navigation