Skip to main content

Advertisement

Log in

Effects of stitch yarns on interlaminar shear behavior of three-dimensional stitched carbon fiber epoxy composites at room temperature and high temperature

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Effects of four kinds of stitch yarns (carbon fiber (CF), aramid fiber, PBO fiber, and silk fiber (SF)) on interlaminar shear strength (ILSS) and failure behavior of the three-dimensional stitched composites (3DSCs) were investigated by double-notch shear test at room temperature (RT) and 100 ℃. The failure process was recorded by the high-speed camera system. The interfacial strength of stitch yarns/resin at 100 ℃ was quantitatively measured for the first time. The results revealed that the mechanical properties of stitch yarns play a dominant role in determining the ILSS of composites at RT, and 3DSCs stitched with PBO stitch yarn show the best ILSS at RT, which can reach about 82.6 MPa. At 100 ℃, the stitch yarns/resin interface performance is the decisive factor to the ILSS of composites, 3DSCs stitched with CF stitch yarn show the best interlaminar shear performance, and the ILSS is about 52.4 MPa. Moreover, the improvement of the ILSS by stitching was more obviously at 100 ℃, increasing by at least 42%. The low-cost SF has a great advantage in replacing CF at RT on the premise of guaranteeing mechanical properties.

Graphical abstract

The effects of four kinds of stitch yarns on interlaminar shear damage law and failure mechanism of the 3DSCs were revealed at room temperature and 100 ℃.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang H, Ng BC, Yu C, Liang HH, Lai W (2021) Mechanical properties study on sandwich hybrid metal/(carbon, glass) fiber reinforcement plastic composite sheet. Adv Compos Hybrid Mater 5(1):83–90

    Article  Google Scholar 

  2. Liu T, Fan C, Ke Z, Gao X, Fan W, Yu L (2022) A real micro-structural model to simulate the transversal compression behaviors of unidirectional composites based on the μ-CT detection. Compos Commun 101184

  3. Backe S, Balle F (2018) A novel short-time concept for fatigue life estimation of carbon (CFRP) and metal/carbon fiber reinforced polymer (MCFRP). Int J Fatigue 116(NOV.):317–322

  4. Song W, Fan W, Liu T, Chen XG, Wang SJ, Zhao YF et al (2021) Flexural fatigue properties and failure propagation of 3D stitched composites under 3-point bending loading. Int J Fatigue 153:106507. https://doi.org/10.1016/j.ijfatigue.2021.106507

  5. Fan W, Dang WS, Liu T, Li JZ, Dong JJ (2019) Fatigue behavior of the 3D orthogonal carbon/glass fibers hybrid composite under three-point bending load. Mater Design 183:108112

    Article  CAS  Google Scholar 

  6. Verma KK, Padmakara G, Gaddikeri KM, Ramesh S, Kumar S, Bose S (2019) The key role of thread and needle selection towards ‘through-thickness reinforcement’ in tufted carbon fiber-epoxy laminates. Compos Part B-Eng 174:8. https://doi.org/10.1016/j.compositesb.2019.106970

    Article  CAS  Google Scholar 

  7. Luinge H, Warnet LL (2020) On an application of multi-material composite laminates in the aerospace sector. Adv Compos Hybrid Mater 3(3):294–302. https://doi.org/10.1007/s42114-020-00163-3

    Article  Google Scholar 

  8. Shanmugam L, Kazemi ME, Qiu C, Rui M, Yang J (2020) Influence of UHMWPE fiber and Ti6Al4V metal surface treatments on the low-velocity impact behavior of thermoplastic fiber metal laminates. Adv Compos Hybrid Mater 3(4):1–14

    Article  Google Scholar 

  9. Icardi U, Sola F (2014) Response of sandwiches undergoing static and blast pulse loading with tailoring optimization and stitching. Aerosp Sci Technol 32(1):293–301

    Article  Google Scholar 

  10. Zhang K, Zheng LG, Aouraghe MA, Xu FJ (2021) Ultra-light-weight kevlar/polyimide 3D woven spacer multifunctional composites for high-gain microstrip antenna. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00382-2

    Article  Google Scholar 

  11. Zhao YL, Liu F, Zhu KJ, Maganti S, Zhao ZY, Bai PK (2022) Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00430-5

    Article  Google Scholar 

  12. Song CY, Fan W, Dong JJ, Zhao YF, Lu LL, Mi PB et al (2021) Modal analysis of 3D multi-axial hybrid composite with experimental and numerical methods. Appl Compos Mater 29(1):27–41. https://doi.org/10.1007/s10443-021-09962-3

    Article  Google Scholar 

  13. Fan W, Zhang G, Zhang X, Dong K, Liang X, Chen WC et al (2022) Superior unidirectional water transport and mechanically stable 3D orthogonal woven fabric for human body moisture and thermal management. Small 18(10):2107150. https://doi.org/10.1002/smll.202107150

    Article  CAS  Google Scholar 

  14. Pingkarawat K, Mouritz AP (2015) Stitched mendable composites: balancing healing performance against mechanical performance. Compos Struct 123:54–64. https://doi.org/10.1016/j.compstruct.2014.12.034

    Article  Google Scholar 

  15. Song CY, Fan W, Liu T, Wang SJ, Song W, Gao XZ (2022) A review on three-dimensional stitched composites and their research perspectives. Compos Part A-Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2021.106730

    Article  Google Scholar 

  16. Hui C, Wang P, Legrand X (2019) Improvement of tufting mechanism during the advanced 3-dimensional tufted composites manufacturing: to the optimisation of tufting threads degradation. Compos Struct 220:423–430. https://doi.org/10.1016/j.compstruct.2019.04.019

    Article  Google Scholar 

  17. Guo J, Chen Z, El-Bahy ZM, Liu H, Abo-Dief HM, Abdul W et al (2022) Tunable negative dielectric properties of magnetic CoFe2O4/graphite-polypyrrole metacomposites. Adv Compos Hybrid Mater 1–8. https://doi.org/10.1007/s42114-022-00485-4

  18. Abtew MA, Boussu F, Bruniaux P, Loghin C, Cristian I, Chen Y et al (2018) Forming characteristics and surface damages of stitched multi-layered para-aramid fabrics with various stitching parameters for soft body armour design. Compos Part A-Appl Sci Manuf 109:517–537

    Article  CAS  Google Scholar 

  19. Nie JJ, Xu YD, Zhang LT, Yin XW, Cheng LF, Ma JQ (2008) Effect of stitch spacing on mechanical properties of carbon/silicon carbide composites. Compos Sci Technol 68(12):2425–2432. https://doi.org/10.1016/j.compscitech.2008.04.012

    Article  CAS  Google Scholar 

  20. Bilisik K, Yolacan G (2015) Short beam strength properties of multistitched biaxial woven E-glass/polyester nano composites. J Ind Text 45(2):199–221. https://doi.org/10.1177/1528083714528017

    Article  Google Scholar 

  21. Mouritz A (2001) Ballistic impact and explosive blast resistance of stitched composites. Compos Part B-Eng 32(5):431–439

    Article  Google Scholar 

  22. Song B, Meng LH, Huang YD (2012) Improvement of interfacial property between PBO fibers and epoxy resin by surface grafting of polyhedral oligomeric silsesquioxanes (POSS). Appl Surf Sci 258(24):10154–10159

    Article  CAS  Google Scholar 

  23. Guo J, Li X, Chen Z, Zhu J, Guo Z (2021) Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2021.08.049

    Article  Google Scholar 

  24. Bourbigot S, Flambard X, Poutch F (2001) Study of the thermal degradation of high performance fibres-application to polybenzazole and p-aramid fibres. Polym Degrad Stabil 74(2):283–290

    Article  CAS  Google Scholar 

  25. Tao Z, Hu D, Jin J, Yang S, Li G, Jiang J (2009) Improvement of surface wettability and interfacial adhesion ability of poly(p-phenylene benzobisoxazole) (PBO) fiber by incorporation of 2,5-dihydroxyterephthalic acid (DHTA). Eur Polym J 45(1):302–307

    Article  Google Scholar 

  26. Ogale A, Mitschang P (2006) Effect of sewing threads on interlaminar shear strength and flexural bending strength of stitched non-crimp carbon fabric laminates. Adv Compos Lett 15(6):199–206

    Google Scholar 

  27. Zhao NP, Rodel H, Herzberg C, Gao SL, Krzywinski S (2009) Stitched glass/PP composite. Part I: Tensile and impact properties. Compos Part A-Appl Sci Manuf 40(5):635–643. https://doi.org/10.1016/j.compositesa.2009.02.019

  28. Margossian A, Bel S, Balvers JM, Leutz D, Hinterhoelzl R (2014) Finite element forming simulation of locally stitched non-crimp fabrics. Compos Part A-Appl Sci Manuf 61(7):152–162

    Article  Google Scholar 

  29. Liu Q, Wang X, Tan X, Xie X, Li Y, Zhao P et al (2018) A strategy for improving the mechanical properties of silk fiber by directly injection of ferric ions into silkworm. Mater Design 146(MAY):134–141

    Article  CAS  Google Scholar 

  30. Oshkovr SA, Eshkoor RA, Taher ST, Ariffin AK, Azhari CH (2012) Crashworthiness characteristics investigation of silk/epoxy composite square tubes. Compos Struct 94(8):2337–2342

    Article  Google Scholar 

  31. Kirmasha YK, Sharba MJ, Leman Z, Sultan MTH (2020) Mechanical performance of unstitched and silk fiber-stitched woven kenaf fiber-reinforced epoxy composites. Materials 13(21):4801

    Article  CAS  Google Scholar 

  32. Wilkinson MP, Ruggles-Wrenn MB (2017) Fatigue of a 3D orthogonal non-crimp woven polymer matrix composite at elevated temperature. Appl Compos Mater 24(6):1405–1424. https://doi.org/10.1007/s10443-017-9597-5

    Article  CAS  Google Scholar 

  33. Uddin MN, Gandy H, Rahman MM, Asmatulu R (2019) Adhesiveless honeycomb sandwich structures of prepreg carbon fiber composites for primary structural applications. Adv Compos Hybrid Mater 2(2):339–350

    Article  CAS  Google Scholar 

  34. Tang ZL, Xia JS, Yin H, Fu GH, Ai XT, Tang HL et al (2021) High-temperature-resistant barium strontium titanate @Ag/poly(arylene ether nitrile) composites with enhanced dielectric performance and high mechanical strength. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00366-2

    Article  Google Scholar 

  35. Pan D, Yang G, Abo-Dief HM, Dong J, Su F, Liu C et al (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. https://doi.org/10.1007/s40820-022-00863-z

    Article  Google Scholar 

  36. Cao S, Zhis W, Wang X (2009) Tensile properties of CFRP and hybrid FRP composites at elevated temperatures. J compos Mater 43(4):315–330

    Article  CAS  Google Scholar 

  37. Wang P, Yang L, Gao S, Chen XL, Cao T, Wang C et al (2021) Enhanced dielectric properties of high glass transition temperature PDCPD/CNT composites by frontal ring-opening metathesis polymerization. Adv Compos Hybrid Mater 4(3):639–646. https://doi.org/10.1007/s42114-021-00287-0

    Article  CAS  Google Scholar 

  38. Cai J, Murugadoss V, Jiang J, Gao X, Lin Z, Huang M et al (2022) Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00473-8

    Article  Google Scholar 

  39. Xuan JQ, Li DS, Jiang L (2019) Fabrication, properties and failure of 3D stitched carbon/epoxy composites with no stitching fibers damage. Compos Struct 220:602–607. https://doi.org/10.1016/j.compstruct.2019.03.080

    Article  Google Scholar 

  40. Yudhanto A, Watanabe N, Iwahori Y, Hoshi H (2013) Effect of stitch density on tensile properties and damage mechanisms of stitched carbon/epoxy composites. Compos Part B-Eng 46:151–165. https://doi.org/10.1016/j.compositesb.2012.10.003

    Article  CAS  Google Scholar 

  41. Li JZ, Fan W, Liu T, Yuan LJ, Xue LL, Dang WS et al (2020) The temperature effect on the inter-laminar shear properties and failure mechanism of 3D orthogonal woven composites. Text Res J 90(23–24):2806–2817. https://doi.org/10.1177/0040517520927009

    Article  CAS  Google Scholar 

  42. Yan KF, Zhang CY, Qiao SR, Li M, Han D (2011) Failure and strength of 2D-C/SiC composite under in-plane shear loading at elevated temperatures. Mater Design 32(6):3504–3508

    Article  CAS  Google Scholar 

  43. Xu CH, Meng SH, Jin H, Han XX, Xie WH (2019) Modified double-notched specimen for ultra-high temperatures shear-strength testing of carbon/carbon composites. J Eur Ceram Soc 39(15):4654–4663. https://doi.org/10.1016/j.jeurceramsoc.2019.05.002

    Article  CAS  Google Scholar 

  44. Li W, Li Q, Wang X, Lu S, Wang B (2017) The role of maleic anhydride functionalized graphene oxide in improving the interfacial properties of carbon fibre/bismaleimide composites. Polym Int 67(3):276–282

    Article  Google Scholar 

  45. Dai Y, Meng C, Tang S, Qin J, Liu X (2019) Construction of dendritic structure by nano-SiO2 derivate grafted with hyperbranched polyamide in aramid fiber to simultaneously improve its mechanical and compressive properties. Eur Polym J 119

  46. Liu TQ, Liu X, Feng P (2020) A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects. Compos Part B-Eng 191:107958

    Article  CAS  Google Scholar 

  47. Mentlík V, Prosr P, Sušír J (2009) Influence of thermal treatment on the glass transition temperature of thermosetting epoxy laminate. Polym Test. https://doi.org/10.1016/j.polymertesting.2009.03.004

  48. Sohn MS, Hu XZ, Kim JK (2000) Impact damage characterisation of carbon fibre/epoxy composites with multi-layer reinforcement. Compos Part B-Eng 31(8):681–691

    Article  Google Scholar 

  49. Park JM, Kim DS, Kim SR (2003) Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability. J Colloid Interf Sci 264(2):431–445

    Article  CAS  Google Scholar 

  50. He YJ, Mei M, Yang XJ, Wei K, Qu ZL, Fang DN (2020) Experimental characterization of the compaction behavior in preforming process for 3D stitched carbon fabric. Compos Commun 19:203–209. https://doi.org/10.1016/j.coco.2020.04.005

    Article  Google Scholar 

Download references

Funding

The study was accomplished with the help of the funds allotted by National Natural Science Foundation, China (grant numbers: 52073224, 52173080, 12002248); Key Laboratory Fund of Ultra-high Temperature Structural Composite Materials (grant numbers: 6142911200310, 6142911200205); Key Research and Development Program of Xianyang Science and Technology Bureau, China (grant number: 2021ZDYF-GY-0035); Local Transformation Program of Major Scientific and Technological Achievements of Xi'an Science and Technology Bureau, China (grant number: 2021SFGX0003); Technology Innovation Guidance Special Program of Shaanxi Province, China (grant number: 2022CGBX-10); Natural Science Basic Research Program of Shaanxi, China (grant numbers: 2020JQ-819, 2021JQ-659); and Research Fund for the Doctoral Program of Xi’an Polytechnic University (grant number: 107020527).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Fan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The failure mechanism of 3D stitched composites at room temperature and 100 ℃ were revealed.

• The interfacial properties of fiber/resin at 100 ℃ were quantitatively analyzed for the first time.

• The failure process of composite under shear load was studied by high-speed photography system.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3440 KB)

Supplementary file2 (MP4 436 KB)

Supplementary file3 (MP4 250 KB)

Supplementary file4 (MP4 238 KB)

Supplementary file5 (MP4 251 KB)

Supplementary file6 (MP4 269 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Fan, W., Song, C. et al. Effects of stitch yarns on interlaminar shear behavior of three-dimensional stitched carbon fiber epoxy composites at room temperature and high temperature. Adv Compos Hybrid Mater 5, 1951–1965 (2022). https://doi.org/10.1007/s42114-022-00526-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00526-y

Keywords

Navigation