Skip to main content

Advertisement

Log in

Fabrication of nanocomposites and hybrid materials using microbial biotemplates

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Microbes are important part of life that vary in sizes and shapes, diverse surface chemistry and biology, and porous nature of their cell walls. Besides their importance in industrial processes such as fermentation, these serve as biotemplates and provide a biomimetic approach for fabrication of multifarious complex constructs with predefined features, ordered composites and hybrid nanomaterials, microdevices, and micro/nanorobots through various strategies. The template or building blocks for such approaches can be bacterial, algal, and fungal cells or virus particles. Here, we have summarized recent advancements in biofabrication based on live microbes. Using engineering approaches and suitable methods, live microbes can be manipulated as functional “micro/nanodevices and -robots” to further perform biological functions such as replication, distribution, motility, formation of colonies, and secretion of metabolites at will. Biofabrication based on microbes provides effective methods to control and manipulate microbes as functional live building blocks to create micro/nanodevices and -robots for biomedical and energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu Y, Kim E, Ghodssi R et al (2010) Biofabrication to build the biology—device interface. Biofabrication 2(2):22002

    Article  Google Scholar 

  2. Mironov V, Trusk T, Kasyanov V et al (2009) Biofabrication: a 21st century manufacturing paradigm. Biofabrication 1(2):22001

    Article  Google Scholar 

  3. Edelman PD, Mcfarland DC, Mironov VA et al (2005) Commentary: in vitro-cultured meat production. Tissue Eng 11(5–6):659–662

    Article  Google Scholar 

  4. Lee KC, Stadlbauer V, Jalan R (2016) Extracorporeal liver support devices for listed patients. Liver Transpl 22:839–848

    Article  Google Scholar 

  5. Pashuck ET, Stevens M (2016) From clinical imaging to implantation of 3D printed tissues. Nat Biotechnol 34(3):295–296

    Article  Google Scholar 

  6. Kang H, Lee SJ, Ko IK et al (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319

    Article  Google Scholar 

  7. Ullah MW, Shi Z, Shi X et al (2017) Microbes as structural templates in biofabrication: study of surface chemistry and applications. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.7b02765

  8. Priyanka P, Arun AB, Young CC et al (2014) Prospecting exopolysaccharides produced by selected bacteria associated with marine organisms for biotechnological applications. Chin J Polym Sci 33(2):236–244

    Article  Google Scholar 

  9. Dubilier N, Mcfallngai MJ, Zhao L (2015) Microbiology: create a global microbiome effort. Nature 526(7575):631

    Article  Google Scholar 

  10. Thakker CD, Ranade DR (2002) An alkalophilic Methanosarcina isolated from Lonar crater. Curr Sci 82(4):455–458

    Google Scholar 

  11. Saiki T, Kimura R, Arima K (1972) Isolation and characterization of extremely thermophilic bacteria from hot springs. Agric Biol Chem 36(13):2357–2366

    Article  Google Scholar 

  12. Kiprono SJ, Ullah MW, Yang G (2017) Encapsulation of E. coli in biomimetic and Fe3O4 doped hydrogel: structural and viability analyses. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-017-8625-6

  13. Biteen JS, Blainey PC, Cardon ZG et al (2016) Tools for the microbiome: nano and beyond. ACS Nano 10(1):6–37

    Article  Google Scholar 

  14. Pennisi E (2010) Body’s hardworking microbes get some overdue respect. Science 330(6011):1619

    Article  Google Scholar 

  15. Vazquez E, Villaverde A (2013) Microbial biofabrication for nanomedicine: biomaterials, nanoparticles and beyond. Nanomedicine 8(12):1895–1898

    Article  Google Scholar 

  16. Heitkamp MA, Stewart WP (1996) A novel porous nylon biocarrier for immobilized bacteria. Appl Environ Microbiol 62(12):4659–4662

    Google Scholar 

  17. Akay G, Erhan E, Keskinler B (2005) Bioprocess intensification in flow-through monolithic microbioreactors with immobilized bacteria. Biotechnol Bioeng 90(2):180–190

    Article  Google Scholar 

  18. Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzym Microb Technol 28(4):404–409

    Article  Google Scholar 

  19. Wang J, Van Tittelboom K, De Belie N et al (2012) Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr Build Mater 26(1):532–540

    Article  Google Scholar 

  20. Nassif N, Bouvet O, Rager MN et al (2002) Living bacteria in silica gels. Nat Mater 1(1):42–44

    Article  Google Scholar 

  21. Mutlu BR, Hirschey K, Wackett LP et al (2015) Long-term preservation of silica gel-encapsulated bacterial biocatalysts by desiccation. J Sol-Gel Sci Technol 74(3):823–833

    Article  Google Scholar 

  22. Wiley BJ, Qin D, Xia Y (2010) Nanofabrication at high throughput and low cost. ACS Nano 4(7):3554–3559

    Article  Google Scholar 

  23. Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5(3):491–502

    Article  Google Scholar 

  24. Ullah MW, Khattak WA, Ul-Islam M et al (2016) Metabolic engineering of synthetic cell-free systems: strategies and applications. Biochem Eng J 105:391–405

    Article  Google Scholar 

  25. Rozhok S, Fan Z, Nyamjav D et al (2006) Attachment of motile bacterial cells to prealigned holed microarrays. Langmuir 22(26):11251–11254

    Article  Google Scholar 

  26. Rowan B, Wheeler MA, Crooks RM (2002) Patterning bacteria within hyperbranched polymer film templates. Langmuir 18(25):9914–9917

    Article  Google Scholar 

  27. Rozhok S, Shen CKF, Littler PLH et al (2005) Methods for fabricating microarrays of motile bacteria. Small 1(4):445–451

    Article  Google Scholar 

  28. Suo Z, Avci R, Yang X et al (2008) Efficient immobilization and patterning of live bacterial cells. Langmuir 24(8):4161–4167

    Article  Google Scholar 

  29. Weibel DB, Diluzio WR, Whitesides GM (2007) Microfabrication meets microbiology. Nat Rev Microbiol 5(3):209–218

    Article  Google Scholar 

  30. Xu L, Robert L, Ouyang Q et al (2007) Microcontact printing of living bacteria arrays with cellular resolution. Nano Lett 7(7):2068–2072

    Article  Google Scholar 

  31. Meyer RL, Zhou X, Tang L et al (2010) Immobilisation of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy 110(11):1349–1357

    Article  Google Scholar 

  32. Miccio L, Marchesano V, Mugnano M et al (2015) Light induced DEP for immobilizing and orienting Escherichia coli bacteria. Opt Lasers Eng 76:34–39

    Article  Google Scholar 

  33. Xin H, Liu Q, Li B (2014) Non-contact fiber-optical trapping of motile bacteria: dynamics observation and energy estimation. Sci Rep 4:6576

    Article  Google Scholar 

  34. Xin H, Cheng C, Li B (2013) Trapping and delivery of Escherichia coli in a microfluidic channel using an optical nanofiber. Nano 5(15):6720–6724

    Google Scholar 

  35. Van Leest T, Caro J (2013) Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal. Lab Chip 13(22):4358–4365

    Article  Google Scholar 

  36. Ye Z, Sitti M (2014) Dynamic trapping and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot. Lab Chip 14(13):2177–2182

    Article  Google Scholar 

  37. Xin H, Xu R, Li B (2012) Optical trapping, driving, and arrangement of particles using a tapered fibre probe. Sci Rep 2:818

    Article  Google Scholar 

  38. Kuang Y, Biran I, Walt DR (2004) Living bacterial cell array for genotoxin monitoring. Anal Chem 76(10):2902–2909

    Article  Google Scholar 

  39. Biran I, Rissin DM, Ron EZ et al (2003) Optical imaging fiber-based live bacterial cell array biosensor. Anal Biochem 315(1):106–113

    Article  Google Scholar 

  40. Shah P, Fritz JV, Glaab E et al (2016) A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nat Commun 7:11535

    Article  Google Scholar 

  41. Inniss WE (1975) Interaction of temperature and psychrophilic microorganisms. Annu Rev Microbiol 29(1):445–466

    Article  Google Scholar 

  42. Adler J (1966) Chemotaxis in bacteria. Science 153(3737):708–716

    Article  Google Scholar 

  43. Zhang R, Ni L, Jin Z et al (2014) Bacteria slingshot more on soft surfaces. Nat Commun 5:5541

    Article  Google Scholar 

  44. Steager E, Kim C, Patel J et al (2007) Control of microfabricated structures powered by flagellated bacteria using phototaxis. Appl Phys Lett 90(26):263901

    Article  Google Scholar 

  45. Carlsen RW, Edwards MR, Zhuang J et al (2014) Magnetic steering control of multi-cellular bio-hybrid microswimmers. Lab Chip 14(19):3850–3859

    Article  Google Scholar 

  46. Kim DH, Casale D, Kőhidai L et al (2009) Galvanotactic and phototactic control of Tetrahymena pyriformis as a microfluidic workhorse. Appl Phys Lett 94(16):163901

    Article  Google Scholar 

  47. Han A, Hou H, Li L et al (2013) Microfabricated devices in microbial bioenergy sciences. Trends Biotechnol 31(4):225–232

    Article  Google Scholar 

  48. Diluzio WR, Turner L, Mayer M et al (2005) Escherichia coli swim on the right-hand side. Nature 435(7046):1271–1274

    Article  Google Scholar 

  49. Mao H, Cremer PS, Manson MD (2003) A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc Natl Acad Sci 100(9):5449–5454

    Article  Google Scholar 

  50. Ragatz L, Jiang Z, Bauer CE et al (1995) Macroscopic phototactic behavior of the purple photosynthetic bacterium Rhodospirillum centenum. Arch Microbiol 163(1):1–6

    Article  Google Scholar 

  51. Sakar MS, Steager EB, Kim DH et al (2011) Modeling, control and experimental characterization of microbiorobots. Int J Robot Res. 30:647–658

    Article  Google Scholar 

  52. Martel S, Tremblay CC, Ngakeng S et al (2006) Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl Phys Lett 89(23):233904

    Article  Google Scholar 

  53. Khalil IS, Pichel MP, Reefman B, et al. (2013) Control of magnetotactic bacterium in a micro-fabricated maze. IEEE 1(1):5488–5493

  54. Chen C, Chen C, Yi Y et al (2014) Construction of a microrobot system using magnetotactic bacteria for the separation of Staphylococcus aureus. Biomed Microdevices 16(5):761–770

    Article  Google Scholar 

  55. Felfoul O, Martel S (2013) Assessment of navigation control strategy for magnetotactic bacteria in microchannel: toward targeting solid tumors. Biomed Microdevices 15(6):1015–1024

    Article  Google Scholar 

  56. Mokrani N, Felfoul O, Zarreh F A, et al. (2010) Magnetotactic bacteria penetration into multicellular tumor spheroids for targeted therapy. IEEE 010(10):4371–4374

  57. Carlsen RW, Sitti M (2014) Bio-hybrid cell-based actuators for microsystems. Small 10(19):3831–3851

    Article  Google Scholar 

  58. Park B, Zhuang J, Yasa O et al (2017) Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano 11(9):8910–8923

    Article  Google Scholar 

  59. Park SJ, Park S, Cho S et al (2013) New paradigm for tumor theranostic methodology using bacteria-based microrobot. Sci Rep 3:3394

    Article  Google Scholar 

  60. Sahari A, Traore MA, Scharf BE et al (2014) Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape. Biomed Microdevices 16(5):717–725

    Article  Google Scholar 

  61. Sahari A, Headen D, Behkam B (2012) Effect of body shape on the motile behavior of bacteria-powered swimming microrobots (BacteriaBots). Biomed Microdevices 14(6):999–1007

    Article  Google Scholar 

  62. Cho S, Park SJ, Ko SY et al (2012) Development of bacteria-based microrobot using biocompatible poly(ethylene glycol). Biomed Microdevices 14(6):1019–1025

    Article  Google Scholar 

  63. Noireaux V, Libchaber A (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci U S A 101(51):17669–17674

    Article  Google Scholar 

  64. Meng F, Engbers GHM, Feijen J (2005) Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. J Control Release 101:187–198

    Article  Google Scholar 

  65. Martino C, Kim S, Horsfall L et al (2012) Protein expression, aggregation, and triggered release from polymersomes as artificial cell-like structures. Angew Chem 51(26):6416–6420

    Article  Google Scholar 

  66. Martino C, Demello AJ (2016) Droplet-based microfluidics for artificial cell generation: a brief review. Interface Focus 6(4):20160011

    Article  Google Scholar 

  67. Kelly BT, Baret J, Taly V et al (2007) Miniaturizing chemistry and biology in microdroplets. Chem Commun. 18:1773–1788

    Article  Google Scholar 

  68. Ichihashi N, Usui K, Kazuta Y et al (2013) Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment. Nat Commun 4:2494

    Article  Google Scholar 

  69. Peters RJRW, Marguet M, Marais S et al (2014) Cascade reactions in multicompartmentalized polymersomes. Angew Chem 53(1):146–150

    Article  Google Scholar 

  70. Lentini R, Santero SP, Chizzolini F et al (2014) Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour. Nat Commun 5:4012

    Article  Google Scholar 

  71. Hutchison CA, Chuang R, Noskov VN et al (2016) Design and synthesis of a minimal bacterial genome. Science 351(6280):aad6253

    Article  Google Scholar 

  72. Roberts MAJ, Cranenburgh RM, Stevens MP et al (2013) Synthetic biology: biology by design. Microbiology 159(7):1219–1220

    Article  Google Scholar 

  73. Archer EJ, Robinson AB, Suel GM (2012) Engineered E. coli that detect and respond to gut inflammation through nitric oxide sensing. ACS Synth Biol 1(10):451–457

    Article  Google Scholar 

  74. Reeves AZ, Spears WE, Du J et al (2015) Engineering Escherichia Coli into a protein delivery system for mammalian cells. ACS Synth Biol 4(5):644–654

    Article  Google Scholar 

  75. Danino T, Prindle A, Kwong GA et al (2015) Programmable probiotics for detection of cancer in urine. Sci Transl Med 7(289):284r–289r

    Article  Google Scholar 

  76. Arnison PG, Bibb MJ, Bierbaum G et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160

    Article  Google Scholar 

  77. Hosseinidoust Z, Mostaghaci B, Yasa O et al (2016) Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev 106:27–44

    Article  Google Scholar 

  78. Kong W, Brovold M, Koeneman BA et al (2012) Turning self-destructing salmonella into a universal DNA vaccine delivery platform. Proc Natl Acad Sci U S A 109(47):19414–19419

    Article  Google Scholar 

  79. Claesen J, Fischbach MA (2015) Synthetic microbes as drug delivery systems. ACS Synth Biol 4(4):358–364

    Article  Google Scholar 

  80. Martin M, Carmona F, Cuesta R et al (2014) Artificial magnetic bacteria: living magnets at room temperature. Adv Funct Mater 24(23):3489–3493

    Article  Google Scholar 

  81. Schuler D (2008) Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 32(4):654–672

    Article  Google Scholar 

  82. Matsumoto Y, Chen R, Anikeeva P et al (2015) Engineering intracellular biomineralization and biosensing by a magnetic protein. Nat Commun 6:8721

    Article  Google Scholar 

  83. Kim DH, Cheang UK, Kőhidai L et al (2010) Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: a tool for fabrication of microbiorobots. Appl Phys Lett 97(17):173702

  84. Kim PSS, Becker A, Ou Y, et al. (2013) Swarm control of cell-based microrobots using a single global magnetic field. IEEE. https://doi.org/10.1109/URAI.2013.6677461

  85. Kim MJ, Brigandi S, Julius AA, et al. (2011) Real-time feedback control using artificial magnetotaxis with rapidly-exploring random tree (RRT) for Tetrahymena pyriformis as a microbiorobot. IEEE 19(6):3183–3188

  86. Kim DH, Kim PSS, Julius AA, et al. (2012) Three-dimensional control of engineered motile cellular microrobots. IEEE. https://doi.org/10.1109/ICRA.2012.6225031

  87. Wang B, Liu P, Jiang W et al (2008) Yeast cells with an artificial mineral shell: protection and modification of living cells by biomimetic mineralization. Angew Chem 47(19):3560–3564

    Article  Google Scholar 

  88. Shi X, Shi Z, Wang D et al (2016) Microbial cells with a Fe3O4 doped hydrogel extracellular matrix: manipulation of living cells by magnetic stimulus. Macromol Biosci 16(10):1506–1514

    Article  Google Scholar 

  89. Ingram LO, Conway T, Clark DP et al (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53(10):2420–2425

    Google Scholar 

  90. Eiteman MA, Ramalingam S (2015) Microbial production of lactic acid. Biotechnol Lett 37(5):955–972

    Article  Google Scholar 

  91. Abdelrahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31(6):877–902

    Article  Google Scholar 

  92. Wang Z, Zhuge J, Fang H et al (2001) Glycerol production by microbial fermentation: a review. Biotechnol Adv 19(3):201–223

    Article  Google Scholar 

  93. Williams ST, Vickers JC (1986) The ecology of antibiotic production. Microb Ecol 12(1):43–52

    Article  Google Scholar 

  94. Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48(7):1065–1079

    Article  Google Scholar 

  95. Ferrermiralles N, Villaverde A (2013) Bacterial cell factories for recombinant protein production; expanding the catalogue. Microb Cell Factories 12(1):113

    Article  Google Scholar 

  96. Ihssen J, Kowarik M, Dilettoso S et al (2010) Production of glycoprotein vaccines in Escherichia coli. Microb Cell Factories 9(1):61

    Article  Google Scholar 

  97. Liu L, Liu Y, Li J et al (2011) Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Factories 10(1):99

    Article  Google Scholar 

  98. Trovatti E, Serafim LS, Freire CSR et al (2011) Gluconacetobacter sacchari: an efficient bacterial cellulose cell-factory. Carbohydr Polym 86(3):1417–1420

    Article  Google Scholar 

  99. Xiao Y, Chen H, Wang Y et al (2016) Large-scale production of foot-and-mouth disease virus (serotype Asia1) VLP vaccine in Escherichia coli and protection potency evaluation in cattle. BMC Biotechnol 16(1):56

    Article  Google Scholar 

  100. Kavscek M, Stražar M, Curk T et al (2015) Yeast as a cell factory: current state and perspectives. Microb Cell Factories 14(1):94

    Article  Google Scholar 

  101. Khattak WA, Ulislam M, Ullah MW et al (2014) Yeast cell-free enzyme system for bio-ethanol production at elevated temperatures. Process Biochem 49(3):357–364

    Article  Google Scholar 

  102. Van Dijl JM, Hecker M (2013) Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Factories 12(1):3

    Article  Google Scholar 

  103. Song AA, In LLA, Lim SHE et al (2017) A review on Lactococcus lactis: from food to factory. Microb Cell Factories 16(1):55

    Article  Google Scholar 

  104. Blakemore R (1975) Magnetotactic bacteria. Science 190(4212):377–379

    Article  Google Scholar 

  105. Prozorov T, Bazylinski DA, Mallapragada SK et al (2013) Novel magnetic nanomaterials inspired by magnetotactic bacteria: topical review. Mater Sci Eng R Rep 74(5):133–172

    Article  Google Scholar 

  106. Goldhawk DE, Rohani R, Sengupta A et al (2012) Using the magnetosome to model effective gene-based contrast for magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(4):378–388

    Article  Google Scholar 

  107. Schwarz S, Fernandes F, Sanroman L et al (2009) Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells. J Magn Magn Mater 321(10):1533–1538

    Article  Google Scholar 

  108. Sun J, Duan J, Dai S et al (2007) In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bio-nanoparticles as drug carriers. Cancer Lett 258(1):109–117

    Article  Google Scholar 

  109. Sun J, Duan J, Dai S et al (2008) Preparation and anti-tumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: magnetic nanoparticles as drug carriers isolated from Magnetospirillum gryphiswaldense. Biotechnol Bioeng 101(6):1313–1320

    Article  Google Scholar 

  110. Tang Y, Wang D, Zhou C et al (2012) Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther 19(12):1187–1195

    Article  Google Scholar 

  111. Ullah MW, Ul Islam M, Khan S et al (2017) Recent advancements in bioreactions of cellular and cell-free systems: a study of bacterial cellulose as a model. Korean J Chem Eng 34(6):1591–1599

    Article  Google Scholar 

  112. Shi Z, Zhang Y, Phillips GO et al (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545

    Article  Google Scholar 

  113. Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92(2):1432–1442

    Article  Google Scholar 

  114. Svensson A, Nicklasson E, Harrah T et al (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26(4):419–431

    Article  Google Scholar 

  115. Fu L, Zhang Y, Li C et al (2012) Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. J Mater Chem 22(24):12349–12357

    Article  Google Scholar 

  116. Li Y, Tian Y, Zheng W et al (2017) Composites of bacterial cellulose and small molecule-decorated gold nanoparticles for treating gram-negative bacteria-infected wounds. Small 13:1700130

    Article  Google Scholar 

  117. De Olyveira GM, Santos MLD, Costa LMM et al (2014) Bacterial cellulose nanobiocomposites for dental materials scaffolds. J Biomater Tissue Eng 4(7):536–542

    Article  Google Scholar 

  118. Kowalskaludwicka K, Cala J, Grobelski B et al (2013) Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch Med Sci 9(3):527–534

    Article  Google Scholar 

  119. Klemm D, Schumann D, Udhardt U et al (2001) Bacterial synthesized cellulose: artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603

    Article  Google Scholar 

  120. Zang S, Zhang R, Chen H et al (2015) Investigation on artificial blood vessels prepared from bacterial cellulose. Mater Sci Eng C 46:111–117

    Article  Google Scholar 

  121. Ullah MW, Ul-Islam M, Khan S et al (2016) Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system. Carbohydr Polym 136:908–916

    Article  Google Scholar 

  122. Ullah MW, Ul-Islam M, Khan S et al (2015) Innovative production of bio-cellulose using a cell-free system derived from a single cell line. Carbohydr Polym 132:286–294

    Article  Google Scholar 

  123. Nimeskern L, Martínezávila H, Sundberg J et al (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21

    Article  Google Scholar 

  124. Sano MB, Rojas AD, Gatenholm P et al (2010) Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers. Ann Biomed Eng 38(8):2475–2484

    Article  Google Scholar 

  125. Kondo T, Nojiri M, Hishikawa Y et al (2002) Biodirected epitaxial nanodeposition of polymers on oriented macromolecular templates. Proc Natl Acad Sci 99(22):14008–14013

    Article  Google Scholar 

  126. Putra A, Kakugo A, Furukawa H et al (2008) Production of bacterial cellulose with well oriented fibril on PDMS substrate. Polym J 40(2):137–142

    Article  Google Scholar 

  127. Uraki Y, Nemoto J, Otsuka H et al (2007) Honeycomb-like architecture produced by living bacteria, Gluconacetobacter xylinus. Carbohydr Polym 69(1):1–6

    Article  Google Scholar 

  128. Zang S, Sun Z, Liu K et al (2014) Ordered manufactured bacterial cellulose as biomaterial of tissue engineering. Mater Lett 128:314–318

    Article  Google Scholar 

  129. Geisel N, Clasohm J, Shi X et al (2016) Microstructured multilevel bacterial cellulose allows the guided growth of neural stem cells. Small 12(39):5407–5413

    Article  Google Scholar 

  130. Kubiak K, Kurzawa M, Jedrzejczakkrzepkowska M et al (2014) Complete genome sequence of Gluconacetobacter xylinus E25 strain—valuable and effective producer of bacterial nanocellulose. J Biotechnol 176(176):18–19

    Article  Google Scholar 

  131. Yan H, Chen W (2010) 3′,5′-Cyclic diguanylic acid: a small nucleotide that makes big impacts. Chem Soc Rev 39(8):2914–2924

    Article  Google Scholar 

  132. Ryu M, Gomelsky M (2014) Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications. ACS Synth Biol 3(11):802–810

    Article  Google Scholar 

  133. Bi JC, Liu S, Li CF et al (2014) Morphology and structure characterization of bacterial celluloses produced by different strains in agitated culture. J Appl Microbiol 117(5):1305–1311

    Article  Google Scholar 

  134. Bodin A, Backdahl H, Fink H et al (2007) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97(2):425–434

    Article  Google Scholar 

  135. Li Y, Jiang K, Feng J et al (2017) Construction of small-diameter vascular graft by shape-memory and self-rolling bacterial cellulose membrane. Adv Healthc Mater 6(11):1601343

    Article  Google Scholar 

  136. Shi Z, Gao X, Ullah MW et al (2016) Electroconductive natural polymer-based hydrogels. Biomaterials 111:40–54

    Article  Google Scholar 

  137. Yang J, Yang X, Wang L et al (2017) Biomimetic nanofibers can construct effective tissue-engineered intervertebral discs for therapeutic implantation. Nano 9(35):13095–13103

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31270150, 51603079, 21774039) and China Postdoctoral Science Foundation (2015M572132, 2016M602291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Shi, X., Ullah, M.W. et al. Fabrication of nanocomposites and hybrid materials using microbial biotemplates. Adv Compos Hybrid Mater 1, 79–93 (2018). https://doi.org/10.1007/s42114-017-0018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-017-0018-x

Keywords

Navigation