Skip to main content

Advertisement

Log in

Effect of body shape on the motile behavior of bacteria-powered swimming microrobots (BacteriaBots)

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Swimming microrobots are envisioned to impact minimally invasive diagnosis, localized treatment of diseases, and environmental monitoring. Dynamics of micro-scale swimming robots falls in the realm of low Reynolds number, where viscous forces exerted on the robots are dominant over inertia. Viscous forces developed at the interface of the swimming microrobots and the surrounding fluid are a strong function of the body geometry. In this work, a collection of bacteria-powered micro-robots (BacteriaBots) with prolate spheroid, barrel, and bullet-shaped bodies is fabricated and the influence of body shape on the dynamics of the BacteriaBots is investigated. We have experimentally demonstrated that using non-spherical geometries increases the mean directionality of the motion of the BacteriaBots but does not significantly affect their average speed compared with their spherical counterparts. We have also demonstrated that directionality of non-spherical BacteriaBots depends on the aspect ratio of the body and for the case of prolate spheroid, a higher aspect ratio of two led to a larger directionality compared to their low aspect ratio counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • D. Akin, J. Sturgis, K. Ragheb, D. Sherman, K. Burkholder, J.P. Robinson, A.K. Bhunia, S. Mohammed, R. Bashir, Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat. Nanotechnol. 2, 441–449 (2007)

    Article  Google Scholar 

  • C.S. Barker, B.M. Prüß, P. Matsumura, Increased motility of Escherichia coli by insertion sequence element integration into the regulatory region of the flhD operon. J. Bacteriol. 186, 7529–7537 (2004)

    Article  Google Scholar 

  • B. Behkam, M. Sitti, Bacterial flagella-based propulsion and on/off motion control of microscale objects. Appl. Phys. Lett. 90, 023902 (2007)

    Article  Google Scholar 

  • B. Behkam, M. Sitti, Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads. Appl. Phys. Lett. 93, 223901 (2008)

    Article  Google Scholar 

  • B. Behkam, M. Sitti, Bacteria integrated swimming microrobots. 50 years of artificial intelligence 154–163 (2007a)

  • H.C. Berg, D.A. Brown, Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500 (1972)

    Article  Google Scholar 

  • H.C. Berg, Random walks in biology: Princeton Univ Pr. (1993)

  • J.A. Champion, Y.K. Katare, S. Mitragotri, Making polymeric micro-and nanoparticles of complex shapes. Proc. Natl. Acad. Sci. 104, 11901 (2007)

    Article  Google Scholar 

  • A. Darji, C.A. Guzmán, B. Gerstel, P. Wachholz, K.N. Timmis, J. Wehland, T. Chakraborty, S. Weiss, Oral somatic transgene vaccination using attenuated S. typhimurium. Cell 91, 765–775 (1997)

    Article  Google Scholar 

  • N. Darnton, L. Turner, K. Breuer, H.C. Berg, Moving fluid with bacterial carpets. Biophys. J. 86, 1863–1870 (2004)

    Article  Google Scholar 

  • R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Microscopic artificial swimmers. Nature 437, 862–865 (2005)

    Article  Google Scholar 

  • R. Fernandes, M. Zuniga, F.R. Sassine, M. Karakoy, D.H. Gracias, Enabling Cargo–Carrying Bacteria via Surface Attachment and Triggered Release. Small 7, 588–592 (2011)

    Article  Google Scholar 

  • Y. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, D.E. Discher, Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007)

    Article  Google Scholar 

  • S.E.A. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, J.M. DeSimone, The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. 105, 11613 (2008)

    Article  Google Scholar 

  • Y. Han, A. Alsayed, M. Nobili, A.G. Yodh, Quasi-two-dimensional diffusion of single ellipsoids: Aspect ratio and confinement effects. Phys. Rev. E 80, 011403 (2009)

    Article  Google Scholar 

  • J. Happel, H. Brenner, L.R.N. Hydrodynamics Nijhoff. Dordrecht, The Netherlands (1983)

  • D.M. Heimann, S.A. Rosenberg, Continuous intravenous administration of live genetically modified Salmonella typhimurium in patients with metastatic melanoma. J. Immunother. (Hagerstown, Md: 1997) 26, 179 (2003)

    Article  Google Scholar 

  • C. Ho, A. Keller, J. Odell, R. Ottewill, Preparation of monodisperse ellipsoidal polystyrene particles. Colloid Polym. Sci. 271, 469–479 (1993)

    Article  Google Scholar 

  • S. Martel, C.C. Tremblay, S. Ngakeng, G. Langlois, Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Applied Physics Letters 89:233904-233904-233903 (2006)

    Google Scholar 

  • S. Muro, C. Garnacho, J.A. Champion, J. Leferovich, C. Gajewski, E.H. Schuchman, S. Mitragotri, V.R. Muzykantov, Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther. 16, 1450–1458 (2008)

    Article  Google Scholar 

  • S. Nuyts, L. Van Mellaert, J. Theys, W. Landuyt, P. Lambin, J. Anné, Clostridium spores for tumor-specific drug delivery. Anti-cancer Drugs 13, 115 (2002)

    Article  Google Scholar 

  • P. Paglia, E. Medina, I. Arioli, C.A. Guzman, M.P. Colombo, Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma. Blood 92, 3172–3176 (1998)

    Google Scholar 

  • J.H. Park, G. von Maltzahn, L. Zhang, M.P. Schwartz, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv. Mater. 20, 1630–1635 (2008)

    Article  Google Scholar 

  • J.H. Park, G. von Maltzahn, L. Zhang, A.M. Derfus, D. Simberg, T.J. Harris, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 5, 694–700 (2009)

    Article  Google Scholar 

  • D.R. Sizemore, A.A. Branstrom, J.C. Sadoff, Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science 270, 299–303 (1995)

    Article  Google Scholar 

  • E. Steager, C.B. Kim, J. Patel, S. Bith, C. Naik, L. Reber, M.J. Kim, Control of microfabricated structures powered by flagellated bacteria using phototaxis. Applied Physics Letters 90:263901-263901-263903 (2007)

    Google Scholar 

  • Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, An actuated pump on-chip powered by cultured cardiomyocytes. Lab Chip 6, 362–368 (2006)

    Article  Google Scholar 

  • L. Tao, W. Hu, Y. Liu, G. Huang, B.D. Sumer, J. Gao, Shape-specific polymeric nanomedicine: emerging opportunities and challenges. Exp. Biol. Med. 236, 20–29 (2011)

    Article  Google Scholar 

  • B. Ten Hagen, S. Van Teeffelen, H. Löwen, Brownian motion of a self-propelled particle. J. Phys. Condens. Matter 23, 194119 (2011)

    Article  Google Scholar 

  • J.F. Toso, V.J. Gill, P. Hwu, F.M. Marincola, N.P. Restifo, D.J. Schwartzentruber, R.M. Sherry, S.L. Topalian, J.C. Yang, F. Stock, Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20, 142–152 (2002)

    Article  Google Scholar 

  • M.A. Traoré, A. Sahari, B. Behkam, Computational and experimental study of chemotaxis of an ensemble of bacteria attached to a microbead. Phys. Rev. E 84, 061908 (2011)

    Article  Google Scholar 

  • G. Vassaux, J. Nitcheu, S. Jezzard, N.R. Lemoine, Bacterial gene therapy strategies. J. Pathol. 208, 290–298 (2006)

    Article  Google Scholar 

  • D.B. Weibel, P. Garstecki, D. Ryan, W.R. DiLuzio, M. Mayer, J.E. Seto, G.M. Whitesides, Microoxen: Microorganisms to move microscale loads. Proc. Natl. Acad. Sci. U. S. A. 102, 11963 (2005)

    Article  Google Scholar 

  • A.Y. Yong, S. Shabahang, T.M. Timiryasova, Q. Zhang, R. Beltz, I. Gentschev, W. Goebel, A.A. Szalay, Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat. Biotechnol. 22, 313–320 (2004)

    Article  Google Scholar 

  • L. Zhang, J.J. Abbott, L. Dong, B.E. Kratochvil, D. Bell, B.J. Nelson, Artificial bacterial flagella: Fabrication and magnetic control. Appl. Phys. Lett. 94, 064107 (2009)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge Birgit Scharf from the Biological Sciences Department at Virginia Tech for gifting the bacteria. Our gratitude also goes to our colleagues in the MicroN BASE laboratory at Virginia Tech especially Mehdi Kargar for helping with SEM and Meghan Canter for helping with particle stretching. We also appreciate Virginia Tech’s laboratory for interdisciplinary statistical analysis (LISA) for insightful discussions and Hamid Sahari for helping with the developing of the graphics. This work was supported by the National Science Foundation (IIS-117519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahareh Behkam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahari, A., Headen, D. & Behkam, B. Effect of body shape on the motile behavior of bacteria-powered swimming microrobots (BacteriaBots). Biomed Microdevices 14, 999–1007 (2012). https://doi.org/10.1007/s10544-012-9712-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9712-1

Keywords

Navigation