Skip to main content
Log in

Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Nano-Fe2O3 and CoFe2O4 were suspended in molten salt of alkali-metal chloride (LiCl-KCl-CsCl) and their catalytic activity in electrochemical ammonia synthesis was evaluated from potentiostatic electrolysis at 600 K. The presence of nanoparticle suspension in the molten chloride resulted in improved production of NH3, recording NH3 synthesis rate of 1.78×10−10 mol s1 cm−2 and 3.00×10−10 mol s−1 cm−2 with CoFe2O4 and Fe2O3, which are 102% and 240% higher than that without the use of a nanocatalyst, respectively. We speculated that the nanoparticles triggered both the electrochemical reduction of nitrogen and also chemical reaction between nitrogen and hydrogen that was produced from water electro-reduction on cathode. The use of nanocatalysts in the form of suspension offers an effective way to overcome the sluggish nature of nitrogen reduction in the molten chloride electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. Giddey, S. P. S. Badwal and A. Kulkarni, Int. J. Hydrogen Energy, 38, 14576 (2013).

    Article  CAS  Google Scholar 

  2. S. Licht, B. Cui, B. Wang, F. Li, J. Lau and S. Liu, Science, 345, 637 (2014).

    Article  CAS  Google Scholar 

  3. A. Anastasopoulou, Q. Wang, V. Hessel and J. Lang, Processes, 2, 694 (2014).

    Article  Google Scholar 

  4. J.N. Sahu, S. Hussain and B. C. Meikap, Korean J. Chem. Eng., 28, 1380 (2011).

    Article  CAS  Google Scholar 

  5. I. L. Jung, Y. C. Park and D. H. Park, Korean J. Chem. Eng., DOI: 10.1007/s11814-016-0011-z.

  6. R. Lan, J.T. S. Irvine and S. Tao, Sci. Rep., 3, 1145 (2013).

    Article  Google Scholar 

  7. T. Murakami, T. Nohira, Y. H. Ogata and Y. Ito, Electrochem. Solid-State Lett., 8, E1 (2005).

    Article  CAS  Google Scholar 

  8. G.M. Haarberg and J. J. Egan, Ber. Bunsen-Ges. Phys. Chem., 102, 1298 (1998).

    Article  CAS  Google Scholar 

  9. T. Murakami, T. Nishikiori, T. Nohira and Y. Ito, J. Am. Soc., 125, 334 (2003)

    Article  CAS  Google Scholar 

  10. T. Murakami, T. Nohira, T. Goto, Y. H. Ogata and Y. Ito, Electrochim. Acta., 50, 5423 (2005).

    Article  CAS  Google Scholar 

  11. T. Murakami, T. Nohira, Y. Araki, T. Goto, R. Hagiwara and Y.H. Ogata, Electrochem. Solid-State Lett., 10, E4 (2007).

    Article  CAS  Google Scholar 

  12. T. Murakami, T. Nohira, Y. H. Ogata and Y. Ito, Electrochem. Solid-State Lett., 8, D12 (2005).

    Article  CAS  Google Scholar 

  13. T. Murakami, T. Nohira, Y. H. Ogata and Y. Ito, J. Electrochem. Soc., 152, D109 (2005).

    Article  CAS  Google Scholar 

  14. T. Murakami, T. Nishikiori, T. Nohira and Y. Ito, Electrochem. Solid-State Lett., 8, D19 (2005).

    Article  CAS  Google Scholar 

  15. K. Kim, J.-N. Kim, H. C. Yoon and J.-I. Han, Int. J. Hydrogen Energy, 40, 5578 (2015).

    Article  CAS  Google Scholar 

  16. F.-F. Li and S. Licht, Inorg. Chem., 53, 10042 (2014).

    Article  CAS  Google Scholar 

  17. B.H. Park and J. Hur, Korean J. Chem. Eng., 27, 1278 (2010).

    Article  CAS  Google Scholar 

  18. H.A. Laitinen, W. S. Ferguson and R. A. Osteryoung, J. Electrochem. Soc., 104, 516 (1957).

    Article  CAS  Google Scholar 

  19. K. Amezawa, Y. Ito and Y. Tomii, J. Electrochem. Soc., 141, 3096 (1994).

    Article  CAS  Google Scholar 

  20. T. Goto and Y. Ito, Electrochim. Acta., 43, 3379 (1998).

    Article  CAS  Google Scholar 

  21. G.M. Haarberga, E. Kvalheima, S. Rolsethb, T. Murakamic, S. Pietrzykd and S. Wange, ECS Trans., 3(35), 341 (2007).

    Article  Google Scholar 

  22. S. Licht and B. Wang, Chem. Commun., 46, 7004 (2010).

    Article  CAS  Google Scholar 

  23. C. Wang, J. de Bakker, C. K. Belt, A. Jha, N.R. Neelameggham, S. Pati, L. H. Prentice, G. Tranell and K. S. Brinkman, Energy Technology 2014: Carbon Dioxide Management and Other Technologies, Wiley, 92 (2013).

    Google Scholar 

  24. P.C. Sahoo, K. Kim, J.H. Lee, J.-I. Han and Y.-K. Oh, ACS Sustainable Chem. Eng., 3, 1764 (2015).

    Article  CAS  Google Scholar 

  25. J.R. Jennings, Catalytic ammonia synthesis: fundamentals and practice, p. 351, Plenum, New York (1991).

    Book  Google Scholar 

  26. W.-X. Wang, H.-Q. Zhao, B.-S. Du, J.-M. Wen, F. Li and D.-M. Wang, Appl. Catal. A. Gen., 122, 5 (1995).

    Article  CAS  Google Scholar 

  27. P. J. Smith, D.W. Taylor, D. A. Dowden, C. Kemball and D. J. Taylor, Appl. Catal., 3, 303 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyung Chul Yoon or Jong-In Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Yoo, CY., Kim, JN. et al. Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte. Korean J. Chem. Eng. 33, 1777–1780 (2016). https://doi.org/10.1007/s11814-016-0086-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0086-6

Keywords

Navigation