Skip to main content
Log in

On a nonlocal problem involving a nonstandard nonhomogeneous differential operator

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

In this article, we are concerned with some class of nonlocal problems involving a nonstandard nonlocal and nonhomogeneous differential operator settled in Musielak–Orlicz–Sobolev spaces. We apply variational approach and look for nontrivial solutions, that is, local minimizers of the corresponding energy functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic, New York (1975)

    MATH  Google Scholar 

  2. Alves, C.O., Ferreira, M.C.: Existence of solutions for a class of \(p(x)\)-Laplacian equations involving a concave-convex nonlinearity with critical growth in \(\mathbb{R}^{N}\). Topol. Methods Nonlinear Anal. 45(2), 399–422 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avci, M., Cekic, B., Mashiyev, R.A.: Existence and multiplicity of the solutions of the \(p(x)\)-Kirchhoff type equation via genus theory. Math. Methods Appl. Sci. 34(14), 1751–1759 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Avci, M., Pankov, A.: Multivalued elliptic operators with nonstandard growth. Adv. Nonlinear Anal. 7(1), 35–48 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ayazoglu (Mashiyev), R., Avci, M., Chung, N.T.: Existence of solutions for nonlocal problems in Sobolev–Orlicz spaces via monotone method. Electron. J. Math. Anal. Appl. 4(1), 63–73 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Bethuel, F., Brezis, H., Hlein, F.: Ginzburg–Landau Vortices. Birkhuser, Basel (1994)

    Book  MATH  Google Scholar 

  8. Bethuel, F., Brezis, H., Hlein, F.: Asymptotics for the minimization of a Ginzburg–Landau functional. Calc Var PDE 1, 123–148 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonanno, G., Molica Bisci, G., Rădulescu, V.: Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz–Sobolev spaces. Nonlinear Anal. TMA 75, 4441–4456 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boureanu, M.M., Udrea, D.N.: Existence and multiplicity results for elliptic problems with \(p(.)\)-Growth conditions. Nonlinear Anal. Real World Appl. 14(4), 1829–1844 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chipot, M.: Elliptic Equations: An Introductory Course. Birkhuser, Basel (2009)

    Book  MATH  Google Scholar 

  12. Colasuonno, F., Pucci, P.: Multiplicity of solutions for \(p(x)\)-polyharmonic Kirchhoff equations. Nonlinear Anal. 74, 5962–5974 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Corréa, F.J.S.A., Figueiredo, G.M.: On a \(p\)-Kirchhoff equation via Krasnoselskiis genus. Appl. Math. Lett. 22, 819–822 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Comte, M., Mironescu, P.: Minimizing properties of arbitrary solutions to the Ginzburg–Landau equation. Proc. R. Soc. Edinburgh Sect. A Math. 129(6), 1157–1169 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cruz-Uribe, D.V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Springer, Basel (2013)

    Book  MATH  Google Scholar 

  16. Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  17. Fan, X.L.: Differential equations of divergence form in Musielak–Sobolev spaces and a sub-supersolution method. J. Math. Anal. Appl. 386, 593–604 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fan, X.L.: On nonlocal \(p(x)\)-Laplacian Dirichlet problems. Nonlinear Anal. 72, 3314–3323 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fan, X.L., Zhang, Q.H.: Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem. Nonlinear Anal. 52, 1843–1852 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fan, X.L., Zhao, D.: On the spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\). J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fang, F., Tan, Z.: Existence and multiplicity of solutions for a class of quasilinear elliptic equations: an Orlicz–Sobolev setting. J. Math. Anal. Appl. 389, 420–428 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fukagai, N., Ito, M., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on \(\mathbb{R}^{\mathbb{N}}\). Funkcial. Ekvac. 49, 235–267 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Galewski, M.: A new variational method for the \(p(x)\)-Laplacian equation. Bull. Aust. Math. Soc. 72(1), 53–65 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ginzburg, V., Landau, L.: On the theory of superconductivity. Zh.exper.teor.Fiz. 20, 1064–1082 (1950)

    Google Scholar 

  25. Harjulehto, P., Hästö, P., Klén, R.: Generalized Orlicz spaces and related PDE. Nonlinear Anal. Theory Methods Appl. 143, 155173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hudzik, H.: On generalized Orlicz–Sobolev space. Funct. Approx. Comment. Math. 4, 37–51 (1976)

    MathSciNet  MATH  Google Scholar 

  27. Heidarkhani, S., Caristi, G., Ferrara, M.: Perturbed Kirchhoff-type Neumann problems in Orlicz–Sobolev spaces. Comput. Math. Appl. 71, 2008–2019 (2016)

    Article  MathSciNet  Google Scholar 

  28. Jimbo, S., Morito, Y.: Notes on the limit equation of vortex motion for the Ginzburg–Landau equation with Neumann condition. Jpn. J. Ind. Appl. Math. 18, 483–501 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  30. Krasnosels’kii, M., Rutic’kii, J.: Convex Functions and Orlicz Spaces. Noordhoff, Groningen (1961)

    Google Scholar 

  31. Kufner, A., John, O., Fučik, S.: Function Spaces. Noordhoff, Leyden (1977)

    MATH  Google Scholar 

  32. Lefter, C., Rădulescu, V.D.: On the Ginzburg-Landau energy with weight. Annales de l’Institut Henri Poincar C Analyse Non Linaire 13(2), 171–184 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lu, K., Pan, X.B.: Ginzburg–Landau equation with DeGennes boundary condition. J. Differ. Equ. 129, 136–165 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mihăilescu, M., Rădulescu, V.: Neumann problems associated to non-homogeneous differential operators in Orlicz–Sobolev spaces. Ann. Inst. Fourier 58, 2087–2111 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mironescu, P.: On the stability of radial solutions of the Ginzburg–Landau equation. J. Func. Anal. 130, 334–344 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Morito, Y.: Stable solutions to the Ginzburg-Landau equation with magnetic effect in a thin domain. Jpn. J. Ind. Appl. 21, 129–147 (2001)

    Article  MathSciNet  Google Scholar 

  37. Musielak, J.: Modular Spaces and Orlicz Spaces, Lecture Notes in Math, vol. 1034. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  38. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. American Mathematics Society, Providence (1986)

    Book  MATH  Google Scholar 

  39. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker Inc., New York (1991)

    MATH  Google Scholar 

  40. Rădulescu, V.D., Repovs̆, D.D.: Partial Differential Equations with Variable Equations: Variational Methods and Qualitative Analysis. CRC, New York (2015)

    Book  Google Scholar 

  41. Struwe, M.: Une estimation asymptotique pour le modle de Ginzburg–Landau. C. R. Acad. Sci. Paris 317, 677–680 (1993)

    MathSciNet  MATH  Google Scholar 

  42. Yucedag, Z.: Existence of solutions for \(p(x)\)-Laplacian equations without Ambrosetti–Rabinowitz type condition. Bull. Malays. Math. Sci. Soc. 38(3), 1023–1033 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Avci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avci, M., Süer, B. On a nonlocal problem involving a nonstandard nonhomogeneous differential operator. J Elliptic Parabol Equ 5, 47–67 (2019). https://doi.org/10.1007/s41808-018-0032-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-018-0032-3

Keywords

Mathematics Subject Classification

Navigation