Skip to main content
Log in

Evaluating the optical and gamma-ray protection properties of bismo-tellurite sodium titanium zinc glasses

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Optical properties and gamma-ray attenuation competence of bismo-tellurite sodium titanium zinc glass samples with chemical formula (80 − x)TeO2–10ZnO–5TiO2–5Na2O–xBi2O3, where x = 5, 8, 10, 12, and 15 mol% have been explored. Values of optical electronegativity (χ*) were varied from 0.715 for B5 glass sample to 0.677 for B15 glass sample. Values of linear dielectric susceptibility (χ(1)) were varied from 0.400 for B5 glass sample to 0.430 for glass sample. Values of non-linear optical susceptibility (χ3) and non-linear refractive index \(\left({n}_{2}^{\mathrm{optical}}\right)\) were varied from 4.379 × 10−12 to 5.812 × 10−12 (esu) and from 6.719 × 1011 to 8.656 × 10−11 (esu) for B5 and B15 glasses, respectively. The B15 sample with the highest Bi2O3 content had the maximum mass attenuation coefficient (µm) values across all examined photon energies, while B5 sample with the lowest Bi2O3 content had the minimum (µm). Both half-value layer (T0.5) and mean free path (λ) followed the trend as follows: (T0.5, λ)B5 > (T0.5, λ)B8 > (T0.5, λ)B10 > (T0.5, λ)B12 > (T0.5, λ)B15. The exposure and energy absorption buildup factor (EBF and EABF) values decrease from B5 to B15, demonstrating that the shielding enhancement of glass samples has strengthened. The effective atomic number (Zeff) parameter followed the trend as follows: (Zeff)B15 > (Zeff)B12 > (Zeff)B10 > (Zeff)B8 > (Zeff)B5. Our findings confirm that the enhancement of Bi2O3 content in the bismo-tellurite sodium titanium zinc glass samples plays an important role of improvement in both optical and gamma-ray protection properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statements and Author Contribution

All authors contribute in Conceptualization, Methodology, Software, Validation, Investigation, Data Curation, Writing-Review and Editing, Visualization

References

  1. Kara, U., Susoy, G., Issa, S.A.M., Elshami, W., Yorgun, N.Y., Abuzaid, M.M., Kavaz, E., Tekin, H.O.: Iron (III) oxide doped lithium borate glasses: structural and charged particles/photon shielding properties. J. Non. Cryst. Solids. 546, 120281 (2020). https://doi.org/10.1016/J.JNONCRYSOL.2020.120281

    Article  CAS  Google Scholar 

  2. Rammah, Y.S., Olarinoye, I.O., El-Agawany, F.I., Yousef, E.S., Ibrahim, S., Ali, A.A.: SrO-reinforced potassium sodium borophosphate bioactive glasses: compositional, physical, spectral, structural properties and photon attenuation competence. J. Non. Cryst. Solids. 559, 120667 (2021). https://doi.org/10.1016/J.JNONCRYSOL.2021.120667

    Article  CAS  Google Scholar 

  3. Rammah, Y.S., Sayyed, M.I., El-bashir, B.O., Asiri, S.M., Al-Hadeethi, Y.: Linear optical features and radiation shielding competence of ZnO–B2O3–TeO2-Eu2O3 glasses: role of Eu3+ ions. Opt. Mater. (Amst). 111, 110525 (2021). https://doi.org/10.1016/J.OPTMAT.2020.110525

    Article  CAS  Google Scholar 

  4. Zakaly, H.M.H., Saudi, H.A., Tekin, H.O., Rashad, M., Issa, S.A.M., Rammah, Y.S., Elazaka, A.I., Hessien, M.M., Ene, A.: Glass fabrication using ceramic and porcelain recycled waste and lithium niobate: physical, structural, optical and nuclear radiation attenuation properties. J. Mater. Res. Technol. 15, 4074–4085 (2021). https://doi.org/10.1016/J.JMRT.2021.09.138

    Article  CAS  Google Scholar 

  5. El-Denglawey, A., Zakaly, H.M.H., Alshammari, K., Issa, S.A.M., Tekin, H.O., AbuShanab, W.S., Saddeek, Y.B.: Prediction of mechanical and radiation parameters of glasses with high Bi2O3 concentration. Results. Phys. 21, 103839 (2021). https://doi.org/10.1016/j.rinp.2021.103839

    Article  Google Scholar 

  6. Mostafa, A.M.A., Zakaly, H.M.H., Pyshkina, M., Issa, S.A.M., Tekin, H.O., Sidek, H.A.A., Matori, K.A., Zaid, M.H.M.: Multi-objective optimization strategies for radiation shielding performance of BZBB glasses using Bi2O3: a FLUKA Monte Carlo code calculations. J. Mater. Res. Technol. 9, 12335–12345 (2020). https://doi.org/10.1016/j.jmrt.2020.08.077

    Article  CAS  Google Scholar 

  7. G. Almisned, HO., Tekin, A., Ene, SAM., Issa, G., Kilic, HMH., Zakaly, A. closer look on nuclear radiation shielding properties of Eu3+ doped heavy metal oxide glasses: impact of Al2O3/PbO substitution, Mater. 2021. 14, 5334 (2021).https://doi.org/10.3390/MA14185334

  8. Abouhaswa, A.S., Zakaly, H.M.H., Issa, S.A.M., Rashad, M., Pyshkina, M., Tekin, H.O., El-Mallawany, R., Mostafa, M.Y.A.: Synthesis, physical, optical, mechanical, and radiation attenuation properties of TiO2–Na2O–Bi2O3–B2O3 glasses. Ceram. Int. 47, 185–204 (2021). https://doi.org/10.1016/j.ceramint.2020.08.122

    Article  CAS  Google Scholar 

  9. Mahmoud, I.S., Issa, S.A.M., Zakaly, H.M.H., Saudi, H.A., Ali, A.S., Saddeek, Y.B., Alharbi, T., Tekin, H.O.: Material characterization of WO3/Bi2O3 substituted calcium-borosilicate glasses: structural, physical, mechanical properties and gamma-ray resistance competencies. J. Alloys Compd. 888, 161419 (2021). https://doi.org/10.1016/j.jallcom.2021.161419

    Article  CAS  Google Scholar 

  10. Hivrekar, M.M., Bhoyar, D.N., Mande, V.K., Dhole, V.V., Solunke, M.B., Jadhav, K.M.: Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system. AIP Conf. Proc. 1953, 090074 (2018). https://doi.org/10.1063/1.5032921

    Article  CAS  Google Scholar 

  11. Độ, P.V.: Sm3+ doped borotellurite glass: absorption, fluorescence and optical parameters. VNU. J. Sci. Math. Phys. 34, 33–39 (2018). https://doi.org/10.25073/2588-1124/VNUMAP.4258

    Article  Google Scholar 

  12. Marzouk, M.A., ElBatal, H.A., Ghany, A.A., Eldin, F.E.: Ultraviolet, visible, ESR, and infrared spectroscopic studies of CeO2-doped lithium phosphate glasses and effect of gamma irradiation. J. Mol. Struct. 997(1–3), 94–102 (2011)

    Article  CAS  Google Scholar 

  13. Menazea, A.A., Abdelghany, A.M., Hakeem, N.A., Osman, W.H., El-kader, A.: Precipitation of silver nanoparticles in borate glasses by 1064 nm Nd: YAG nanosecond laser pulses: characterization and dielectric studies. J. Electron. Mater. 49(1), 826–832 (2020)

    Article  CAS  Google Scholar 

  14. Ibrahim, A.M., Hammad, A.H., Abdelghany, A.M., Rabie, G.O.: Mixed alkali effect and samarium ions effectiveness on the structural, optical and non-linear optical properties of borate glass. J. Non-Cryst. Solids 495, 67–74 (2018)

    Article  CAS  Google Scholar 

  15. Abdelghany, A.M., ElBatal, H.A.: Effect of TiO2 doping and gamma ray irradiation on the properties of SrO–B2O3 glasses. J. Non-Cryst. Solids 379, 214–219 (2013)

    Article  CAS  Google Scholar 

  16. Mortada, W.I., Kenawy, I.M., Abdelghany, A.M., Ismail, A.M., Donia, A.F., Nabieh, K.A.: Determination of Cu2+, Zn2+ and Pb2+ in biological and food samples by FAAS after preconcentration with hydroxyapatite nanorods originated from eggshell. Mater. Sci. Eng. C 52, 288–296 (2015)

    Article  CAS  Google Scholar 

  17. Shaalan, M., El-Damrawi, G., Hassan, A., Misbah, M.H.: Structural role of Nd2O3 as a dopant material in modified borate glasses and glass ceramics. J. Mater. Sci. Mater. Electron. 32, 12348–12357 (2021). https://doi.org/10.1007/S10854-021-05866-X/FIGURES/7

    Article  CAS  Google Scholar 

  18. Misbah, M.H., Doweidar, H., Ramadan, R., El-Kemary, M.: Tailoring the structure and properties of iron oxide nanoparticles through the oxygen species of borate glass matrix. J. Non. Cryst. Solids. 545, 120241 (2020). https://doi.org/10.1016/J.JNONCRYSOL.2020.120241

    Article  CAS  Google Scholar 

  19. J. Kim, N. Wang, Y. Chen, al -, Z. Zhu, G. Zheng, R. Zhang, F. Marchini, F.J. Williams, E.J. Calvo -, M.S. Meikhail, I.A. Gohar, A.A. Megahed, Lithium borosilicate glasses as electrolyte for solid state batteries, J. Phys. D. Appl. Phys. 26 (1993) 1125. https://doi.org/10.1088/0022-3727/26/7/019.

  20. Tatsumisago, M., Takano, R., Nose, M., Nagao, K., Kato, A., Sakuda, A., Tadanaga, K., Hayashi, A.: Electrical and mechanical properties of glass and glass-ceramic electrolytes in the system Li3BO3–Li2SO4. J. Ceram. Soc. Japan. 125, 433–437 (2017). https://doi.org/10.2109/JCERSJ2.17026

    Article  Google Scholar 

  21. Ravangvong, S., Chanthima, N., Rajaramakrishna, R., Kim, H.J., Sangwaranatee, N., Kaewkhao, J.: Dy3+ ions doped (Na2O/NaF)-Gd2O3–P2O5 glasses for solid state lighting material applications. Solid. State. Sci. 97, 105972 (2019). https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2019.105972

    Article  CAS  Google Scholar 

  22. E. Paweł Golis, M. Reben, J. Wasylak, J. Filipecki, Investigations of tellurite glasses for optoelectronics devices, Opt. Appl. XXXVIII (2008).

  23. A.M.A.H. Y.S. Rammah, Hesham M.H. Zakaly, Shams A M Issa, H.O. Tekin, M.M. Hessien, H. A. Saudi, Fabrication, physical, structural, optical investigation of cadmium lead-borate glasses doped with Nd3+ ions: experimental study, J. Mater. Sci. Mater. Electron 33 (2022) 1877–1887.

  24. Singh, V.P., Badiger, N.M., Kaewkhao, J.: Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. J. Non. Cryst. Solids. 404, 167–173 (2014). https://doi.org/10.1016/J.JNONCRYSOL.2014.08.003

    Article  CAS  Google Scholar 

  25. Misbah, M.H., Abdelghany, A.M., El-Agawany, F.I., Rammah, Y.S., El-Mallawany, R.: On Y2O3·Li2O·Al2O3·B2O3 glasses: synthesis, structure, physical, optical characteristics and gamma-ray shielding behavior. J. Mater. Sci. Mater. Electron. 32, 16242–16254 (2021)

    Article  CAS  Google Scholar 

  26. Olarinoye, I.O., El-Agawany, F.I., Gamal, A., Yousef, E.S., Rammah, Y.S.: Investigation of mechanical properties, photons, neutrons, and charged particles shielding characteristics of Bi2O3/B2O3/SiO2 glasses. Appl. Phys. A Mater. Sci. Process. 127, 1–16 (2021)

    Article  Google Scholar 

  27. Almatari, M., Agar, O., Altunsoy, E.E., Kilicoglu, O., Sayyed, M.I., Tekin, H.O.: Photon and neutron shielding characteristics of samarium doped lead alumino borate glasses containing barium, lithium and zinc oxides determined at medical diagnostic energies. Results. Phys. 12, 2123–2128 (2019). https://doi.org/10.1016/j.rinp.2019.01.094

    Article  Google Scholar 

  28. Agar, O., Tekin, H.O., Sayyed, M.I., Korkmaz, M.E., Culfa, O., Ertugay, C.: Experimental investigation of photon attenuation behaviors for concretes including natural perlite mineral. Results. Phys. 12, 237–243 (2019). https://doi.org/10.1016/j.rinp.2018.11.053

    Article  Google Scholar 

  29. Henaish, A., Issa, S.A.M., Zakaly, H.M., Tekin, H.O.O., Abouhaswa, A.S.: Characterization of optical and radiation shielding behaviors of ferric oxide reinforced bismuth borate glass. Phys. Scr. (2021). https://doi.org/10.1088/1402-4896/abf581

    Article  Google Scholar 

  30. G. Almisned, H.O. Tekin, E. Kavaz, G. Bilal, S.A.M. Issa, H.M.H. Zakaly, A. Ene, Gamma, fast neutron, proton, and alpha shielding properties of borate glasses: a closer look on lead (II) oxide and bismuth (III) oxide reinforcement, Appl. Sci. 2021. 11, 6837 (2021). https://doi.org/10.3390/APP11156837.

  31. Şakar, E., Özpolat, Ö.F., Alım, B., Sayyed, M.I., Kurudirek, M.: Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020). https://doi.org/10.1016/j.radphyschem.2019.108496

    Article  CAS  Google Scholar 

  32. Fong, W.L., Bashar, K.A., Baki, S.O., Zaid, M.H.M., Goh, B.T., Mahdi, M.A.: Thermal, structural and optical properties of Bi2O3-Na2O-TiO2-ZnO-TeO2 glass system. J. Non. Cryst. Solids. 555, 120621 (2021). https://doi.org/10.1016/J.JNONCRYSOL.2020.120621

    Article  CAS  Google Scholar 

  33. J. A. Duffy, Bonding, energy level and bonds in inorganic, in: Longman Sci. Tech., Longman, England, 1990. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=J.+A.+Duffy%2C+Bonding%2C+Energy+Level+and+Bonds+in+Inorganic+Solids+%28Longman%2C+England%2C+1990%29.&btnG. Accessed 16 December 2021).

  34. M.D.-L.N. (Massachusetts I. of, undefined 2001, Solid state physics part II optical properties of solids, Yumpu.Com. (n.d.). https://www.yumpu.com/en/document/view/5491599/solid-state-physics-part-ii-optical-properties-of-solids (accessed December 16, 2021).

  35. Tichá, H., Tichý, L.: Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381–386 (2002)

    Google Scholar 

  36. Zakaly, H.M., Ashry, A., El-Taher, A., Abbady, A.G.E., Allam, E.A., El-Sharkawy, R.M., Mahmoud, M.E.: Role of novel ternary nanocomposites polypropylene in nuclear radiation attenuation properties: in-depth simulation study. Radiat. Phys. Chem. 188, 109667 (2021). https://doi.org/10.1016/j.radphyschem.2021.109667

    Article  CAS  Google Scholar 

  37. Zakaly, H.M.H., Saudi, H.A., Issa, S.A.M., Rashad, M., Elazaka, A.I., Tekin, H.O., Saddeek, Y.B.: Alteration of optical, structural, mechanical durability and nuclear radiation attenuation properties of barium borosilicate glasses through BaO reinforcement: experimental and numerical analyses. Ceram. Int. 47, 5587–5596 (2021). https://doi.org/10.1016/j.ceramint.2020.10.143

    Article  CAS  Google Scholar 

  38. Tekin, H.O., Shams, A.M.I., Emad, M.A., Rammah, Y.S.: Lithium-fluoro borotellurite glasses: nonlinear optical, mechanical, characteristics and gamma radiation protection characteristics. Radiat. Phys. Chem. 190, 109819 (2022)

    Article  CAS  Google Scholar 

  39. Rammah, Y.S., El-Agawany, F.I., Abdel Wahab, E.A., Hessien, M.M., Shaaban, K.H.S.: Significant impact of V2O5 content on lead phosphor-arsenate glasses for mechanical and radiation shielding applications. Radiat. Phys. Chem. 193, 109956 (2022)

    Article  CAS  Google Scholar 

  40. Abdelghany, A.M., Rammah, Y.S.: Transparent alumino lithium borate glass-ceramics: synthesis, structure and gamma-ray shielding attitude. J. Inorg. Organomet. Polym Mater. 31, 2560–2568 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Taif University Researchers Supporting Project number (TURSP-2020/109), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the first draft of the manuscript. All authors edited the manuscript and approved the final version.

Corresponding author

Correspondence to Y. S. Rammah.

Ethics declarations

Ethics approval

The authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Consent to participate

The authors consent to participate.

Consent for publication

The author’s consent for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekin, H.O., Rammah, Y.S., Hessien, M.M. et al. Evaluating the optical and gamma-ray protection properties of bismo-tellurite sodium titanium zinc glasses. J Aust Ceram Soc 58, 851–866 (2022). https://doi.org/10.1007/s41779-022-00732-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00732-3

Keywords

Navigation